Metamath Proof Explorer
		
		
		
		Description:  Membership in orthogonal complement of H subspace.  (Contributed by NM, 9-Oct-1999)  (New usage is discouraged.)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | shocel | ⊢  ( 𝐻  ∈   Sℋ   →  ( 𝐴  ∈  ( ⊥ ‘ 𝐻 )  ↔  ( 𝐴  ∈   ℋ  ∧  ∀ 𝑥  ∈  𝐻 ( 𝐴  ·ih  𝑥 )  =  0 ) ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | shss | ⊢ ( 𝐻  ∈   Sℋ   →  𝐻  ⊆   ℋ ) | 
						
							| 2 |  | ocel | ⊢ ( 𝐻  ⊆   ℋ  →  ( 𝐴  ∈  ( ⊥ ‘ 𝐻 )  ↔  ( 𝐴  ∈   ℋ  ∧  ∀ 𝑥  ∈  𝐻 ( 𝐴  ·ih  𝑥 )  =  0 ) ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝐻  ∈   Sℋ   →  ( 𝐴  ∈  ( ⊥ ‘ 𝐻 )  ↔  ( 𝐴  ∈   ℋ  ∧  ∀ 𝑥  ∈  𝐻 ( 𝐴  ·ih  𝑥 )  =  0 ) ) ) |