Description: The orthogonal complement of a subspace is a subspace. Part of Remark 3.12 of Beran p. 107. (Contributed by NM, 10-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shocsh | ⊢ ( 𝐴 ∈ Sℋ → ( ⊥ ‘ 𝐴 ) ∈ Sℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shss | ⊢ ( 𝐴 ∈ Sℋ → 𝐴 ⊆ ℋ ) | |
| 2 | ocsh | ⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ 𝐴 ) ∈ Sℋ ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐴 ∈ Sℋ → ( ⊥ ‘ 𝐴 ) ∈ Sℋ ) |