Step |
Hyp |
Ref |
Expression |
1 |
|
ssel |
⊢ ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( 𝐴 ∈ 𝐺 → 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ) ) |
2 |
1
|
anim1d |
⊢ ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( 𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻 ) → ( 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ∧ 𝐵 ∈ 𝐻 ) ) ) |
3 |
2
|
imp |
⊢ ( ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ∧ ( 𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻 ) ) → ( 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ∧ 𝐵 ∈ 𝐻 ) ) |
4 |
3
|
ancomd |
⊢ ( ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ∧ ( 𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻 ) ) → ( 𝐵 ∈ 𝐻 ∧ 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ) ) |
5 |
|
shocorth |
⊢ ( 𝐻 ∈ Sℋ → ( ( 𝐵 ∈ 𝐻 ∧ 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ) → ( 𝐵 ·ih 𝐴 ) = 0 ) ) |
6 |
5
|
imp |
⊢ ( ( 𝐻 ∈ Sℋ ∧ ( 𝐵 ∈ 𝐻 ∧ 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ) ) → ( 𝐵 ·ih 𝐴 ) = 0 ) |
7 |
|
shss |
⊢ ( 𝐻 ∈ Sℋ → 𝐻 ⊆ ℋ ) |
8 |
7
|
sseld |
⊢ ( 𝐻 ∈ Sℋ → ( 𝐵 ∈ 𝐻 → 𝐵 ∈ ℋ ) ) |
9 |
|
shocss |
⊢ ( 𝐻 ∈ Sℋ → ( ⊥ ‘ 𝐻 ) ⊆ ℋ ) |
10 |
9
|
sseld |
⊢ ( 𝐻 ∈ Sℋ → ( 𝐴 ∈ ( ⊥ ‘ 𝐻 ) → 𝐴 ∈ ℋ ) ) |
11 |
8 10
|
anim12d |
⊢ ( 𝐻 ∈ Sℋ → ( ( 𝐵 ∈ 𝐻 ∧ 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ) → ( 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) ) ) |
12 |
11
|
imp |
⊢ ( ( 𝐻 ∈ Sℋ ∧ ( 𝐵 ∈ 𝐻 ∧ 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ) ) → ( 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) ) |
13 |
|
orthcom |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝐵 ·ih 𝐴 ) = 0 ↔ ( 𝐴 ·ih 𝐵 ) = 0 ) ) |
14 |
12 13
|
syl |
⊢ ( ( 𝐻 ∈ Sℋ ∧ ( 𝐵 ∈ 𝐻 ∧ 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ) ) → ( ( 𝐵 ·ih 𝐴 ) = 0 ↔ ( 𝐴 ·ih 𝐵 ) = 0 ) ) |
15 |
6 14
|
mpbid |
⊢ ( ( 𝐻 ∈ Sℋ ∧ ( 𝐵 ∈ 𝐻 ∧ 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ) ) → ( 𝐴 ·ih 𝐵 ) = 0 ) |
16 |
4 15
|
sylan2 |
⊢ ( ( 𝐻 ∈ Sℋ ∧ ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ∧ ( 𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻 ) ) ) → ( 𝐴 ·ih 𝐵 ) = 0 ) |
17 |
16
|
exp32 |
⊢ ( 𝐻 ∈ Sℋ → ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( 𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻 ) → ( 𝐴 ·ih 𝐵 ) = 0 ) ) ) |