Metamath Proof Explorer


Theorem shorth

Description: Members of orthogonal subspaces are orthogonal. (Contributed by NM, 17-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion shorth ( 𝐻S → ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( 𝐴𝐺𝐵𝐻 ) → ( 𝐴 ·ih 𝐵 ) = 0 ) ) )

Proof

Step Hyp Ref Expression
1 ssel ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( 𝐴𝐺𝐴 ∈ ( ⊥ ‘ 𝐻 ) ) )
2 1 anim1d ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( 𝐴𝐺𝐵𝐻 ) → ( 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ∧ 𝐵𝐻 ) ) )
3 2 imp ( ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ∧ ( 𝐴𝐺𝐵𝐻 ) ) → ( 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ∧ 𝐵𝐻 ) )
4 3 ancomd ( ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ∧ ( 𝐴𝐺𝐵𝐻 ) ) → ( 𝐵𝐻𝐴 ∈ ( ⊥ ‘ 𝐻 ) ) )
5 shocorth ( 𝐻S → ( ( 𝐵𝐻𝐴 ∈ ( ⊥ ‘ 𝐻 ) ) → ( 𝐵 ·ih 𝐴 ) = 0 ) )
6 5 imp ( ( 𝐻S ∧ ( 𝐵𝐻𝐴 ∈ ( ⊥ ‘ 𝐻 ) ) ) → ( 𝐵 ·ih 𝐴 ) = 0 )
7 shss ( 𝐻S𝐻 ⊆ ℋ )
8 7 sseld ( 𝐻S → ( 𝐵𝐻𝐵 ∈ ℋ ) )
9 shocss ( 𝐻S → ( ⊥ ‘ 𝐻 ) ⊆ ℋ )
10 9 sseld ( 𝐻S → ( 𝐴 ∈ ( ⊥ ‘ 𝐻 ) → 𝐴 ∈ ℋ ) )
11 8 10 anim12d ( 𝐻S → ( ( 𝐵𝐻𝐴 ∈ ( ⊥ ‘ 𝐻 ) ) → ( 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) ) )
12 11 imp ( ( 𝐻S ∧ ( 𝐵𝐻𝐴 ∈ ( ⊥ ‘ 𝐻 ) ) ) → ( 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) )
13 orthcom ( ( 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝐵 ·ih 𝐴 ) = 0 ↔ ( 𝐴 ·ih 𝐵 ) = 0 ) )
14 12 13 syl ( ( 𝐻S ∧ ( 𝐵𝐻𝐴 ∈ ( ⊥ ‘ 𝐻 ) ) ) → ( ( 𝐵 ·ih 𝐴 ) = 0 ↔ ( 𝐴 ·ih 𝐵 ) = 0 ) )
15 6 14 mpbid ( ( 𝐻S ∧ ( 𝐵𝐻𝐴 ∈ ( ⊥ ‘ 𝐻 ) ) ) → ( 𝐴 ·ih 𝐵 ) = 0 )
16 4 15 sylan2 ( ( 𝐻S ∧ ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ∧ ( 𝐴𝐺𝐵𝐻 ) ) ) → ( 𝐴 ·ih 𝐵 ) = 0 )
17 16 exp32 ( 𝐻S → ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( 𝐴𝐺𝐵𝐻 ) → ( 𝐴 ·ih 𝐵 ) = 0 ) ) )