| Step |
Hyp |
Ref |
Expression |
| 1 |
|
shne0.1 |
⊢ 𝐴 ∈ Sℋ |
| 2 |
|
shs00.2 |
⊢ 𝐵 ∈ Sℋ |
| 3 |
|
oveq12 |
⊢ ( ( 𝐴 = 0ℋ ∧ 𝐵 = 0ℋ ) → ( 𝐴 +ℋ 𝐵 ) = ( 0ℋ +ℋ 0ℋ ) ) |
| 4 |
|
h0elsh |
⊢ 0ℋ ∈ Sℋ |
| 5 |
4
|
shs0i |
⊢ ( 0ℋ +ℋ 0ℋ ) = 0ℋ |
| 6 |
3 5
|
eqtrdi |
⊢ ( ( 𝐴 = 0ℋ ∧ 𝐵 = 0ℋ ) → ( 𝐴 +ℋ 𝐵 ) = 0ℋ ) |
| 7 |
1 2
|
shsub1i |
⊢ 𝐴 ⊆ ( 𝐴 +ℋ 𝐵 ) |
| 8 |
|
sseq2 |
⊢ ( ( 𝐴 +ℋ 𝐵 ) = 0ℋ → ( 𝐴 ⊆ ( 𝐴 +ℋ 𝐵 ) ↔ 𝐴 ⊆ 0ℋ ) ) |
| 9 |
7 8
|
mpbii |
⊢ ( ( 𝐴 +ℋ 𝐵 ) = 0ℋ → 𝐴 ⊆ 0ℋ ) |
| 10 |
|
shle0 |
⊢ ( 𝐴 ∈ Sℋ → ( 𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ ) ) |
| 11 |
1 10
|
ax-mp |
⊢ ( 𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ ) |
| 12 |
9 11
|
sylib |
⊢ ( ( 𝐴 +ℋ 𝐵 ) = 0ℋ → 𝐴 = 0ℋ ) |
| 13 |
2 1
|
shsub2i |
⊢ 𝐵 ⊆ ( 𝐴 +ℋ 𝐵 ) |
| 14 |
|
sseq2 |
⊢ ( ( 𝐴 +ℋ 𝐵 ) = 0ℋ → ( 𝐵 ⊆ ( 𝐴 +ℋ 𝐵 ) ↔ 𝐵 ⊆ 0ℋ ) ) |
| 15 |
13 14
|
mpbii |
⊢ ( ( 𝐴 +ℋ 𝐵 ) = 0ℋ → 𝐵 ⊆ 0ℋ ) |
| 16 |
|
shle0 |
⊢ ( 𝐵 ∈ Sℋ → ( 𝐵 ⊆ 0ℋ ↔ 𝐵 = 0ℋ ) ) |
| 17 |
2 16
|
ax-mp |
⊢ ( 𝐵 ⊆ 0ℋ ↔ 𝐵 = 0ℋ ) |
| 18 |
15 17
|
sylib |
⊢ ( ( 𝐴 +ℋ 𝐵 ) = 0ℋ → 𝐵 = 0ℋ ) |
| 19 |
12 18
|
jca |
⊢ ( ( 𝐴 +ℋ 𝐵 ) = 0ℋ → ( 𝐴 = 0ℋ ∧ 𝐵 = 0ℋ ) ) |
| 20 |
6 19
|
impbii |
⊢ ( ( 𝐴 = 0ℋ ∧ 𝐵 = 0ℋ ) ↔ ( 𝐴 +ℋ 𝐵 ) = 0ℋ ) |