Description: Hilbert subspace sum with the zero subspace. (Contributed by NM, 14-Jan-2005) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | shne0.1 | ⊢ 𝐴 ∈ Sℋ | |
Assertion | shs0i | ⊢ ( 𝐴 +ℋ 0ℋ ) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shne0.1 | ⊢ 𝐴 ∈ Sℋ | |
2 | h0elsh | ⊢ 0ℋ ∈ Sℋ | |
3 | 1 2 | shsval3i | ⊢ ( 𝐴 +ℋ 0ℋ ) = ( span ‘ ( 𝐴 ∪ 0ℋ ) ) |
4 | sh0le | ⊢ ( 𝐴 ∈ Sℋ → 0ℋ ⊆ 𝐴 ) | |
5 | 1 4 | ax-mp | ⊢ 0ℋ ⊆ 𝐴 |
6 | ssequn2 | ⊢ ( 0ℋ ⊆ 𝐴 ↔ ( 𝐴 ∪ 0ℋ ) = 𝐴 ) | |
7 | 5 6 | mpbi | ⊢ ( 𝐴 ∪ 0ℋ ) = 𝐴 |
8 | 7 | fveq2i | ⊢ ( span ‘ ( 𝐴 ∪ 0ℋ ) ) = ( span ‘ 𝐴 ) |
9 | spanid | ⊢ ( 𝐴 ∈ Sℋ → ( span ‘ 𝐴 ) = 𝐴 ) | |
10 | 1 9 | ax-mp | ⊢ ( span ‘ 𝐴 ) = 𝐴 |
11 | 3 8 10 | 3eqtri | ⊢ ( 𝐴 +ℋ 0ℋ ) = 𝐴 |