Metamath Proof Explorer


Theorem shscl

Description: Closure of subspace sum. (Contributed by NM, 15-Dec-2004) (New usage is discouraged.)

Ref Expression
Assertion shscl ( ( 𝐴S𝐵S ) → ( 𝐴 + 𝐵 ) ∈ S )

Proof

Step Hyp Ref Expression
1 oveq1 ( 𝐴 = if ( 𝐴S , 𝐴 , ℋ ) → ( 𝐴 + 𝐵 ) = ( if ( 𝐴S , 𝐴 , ℋ ) + 𝐵 ) )
2 1 eleq1d ( 𝐴 = if ( 𝐴S , 𝐴 , ℋ ) → ( ( 𝐴 + 𝐵 ) ∈ S ↔ ( if ( 𝐴S , 𝐴 , ℋ ) + 𝐵 ) ∈ S ) )
3 oveq2 ( 𝐵 = if ( 𝐵S , 𝐵 , ℋ ) → ( if ( 𝐴S , 𝐴 , ℋ ) + 𝐵 ) = ( if ( 𝐴S , 𝐴 , ℋ ) + if ( 𝐵S , 𝐵 , ℋ ) ) )
4 3 eleq1d ( 𝐵 = if ( 𝐵S , 𝐵 , ℋ ) → ( ( if ( 𝐴S , 𝐴 , ℋ ) + 𝐵 ) ∈ S ↔ ( if ( 𝐴S , 𝐴 , ℋ ) + if ( 𝐵S , 𝐵 , ℋ ) ) ∈ S ) )
5 helsh ℋ ∈ S
6 5 elimel if ( 𝐴S , 𝐴 , ℋ ) ∈ S
7 5 elimel if ( 𝐵S , 𝐵 , ℋ ) ∈ S
8 6 7 shscli ( if ( 𝐴S , 𝐴 , ℋ ) + if ( 𝐵S , 𝐵 , ℋ ) ) ∈ S
9 2 4 8 dedth2h ( ( 𝐴S𝐵S ) → ( 𝐴 + 𝐵 ) ∈ S )