Step |
Hyp |
Ref |
Expression |
1 |
|
shscl.1 |
⊢ 𝐴 ∈ Sℋ |
2 |
|
shscl.2 |
⊢ 𝐵 ∈ Sℋ |
3 |
|
shsss |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 +ℋ 𝐵 ) ⊆ ℋ ) |
4 |
1 2 3
|
mp2an |
⊢ ( 𝐴 +ℋ 𝐵 ) ⊆ ℋ |
5 |
|
sh0 |
⊢ ( 𝐴 ∈ Sℋ → 0ℎ ∈ 𝐴 ) |
6 |
1 5
|
ax-mp |
⊢ 0ℎ ∈ 𝐴 |
7 |
|
sh0 |
⊢ ( 𝐵 ∈ Sℋ → 0ℎ ∈ 𝐵 ) |
8 |
2 7
|
ax-mp |
⊢ 0ℎ ∈ 𝐵 |
9 |
|
ax-hv0cl |
⊢ 0ℎ ∈ ℋ |
10 |
9
|
hvaddid2i |
⊢ ( 0ℎ +ℎ 0ℎ ) = 0ℎ |
11 |
10
|
eqcomi |
⊢ 0ℎ = ( 0ℎ +ℎ 0ℎ ) |
12 |
|
rspceov |
⊢ ( ( 0ℎ ∈ 𝐴 ∧ 0ℎ ∈ 𝐵 ∧ 0ℎ = ( 0ℎ +ℎ 0ℎ ) ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 0ℎ = ( 𝑥 +ℎ 𝑦 ) ) |
13 |
6 8 11 12
|
mp3an |
⊢ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 0ℎ = ( 𝑥 +ℎ 𝑦 ) |
14 |
1 2
|
shseli |
⊢ ( 0ℎ ∈ ( 𝐴 +ℋ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 0ℎ = ( 𝑥 +ℎ 𝑦 ) ) |
15 |
13 14
|
mpbir |
⊢ 0ℎ ∈ ( 𝐴 +ℋ 𝐵 ) |
16 |
4 15
|
pm3.2i |
⊢ ( ( 𝐴 +ℋ 𝐵 ) ⊆ ℋ ∧ 0ℎ ∈ ( 𝐴 +ℋ 𝐵 ) ) |
17 |
1 2
|
shseli |
⊢ ( 𝑥 ∈ ( 𝐴 +ℋ 𝐵 ) ↔ ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑥 = ( 𝑧 +ℎ 𝑤 ) ) |
18 |
1 2
|
shseli |
⊢ ( 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ↔ ∃ 𝑣 ∈ 𝐴 ∃ 𝑢 ∈ 𝐵 𝑦 = ( 𝑣 +ℎ 𝑢 ) ) |
19 |
|
shaddcl |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝑧 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) → ( 𝑧 +ℎ 𝑣 ) ∈ 𝐴 ) |
20 |
1 19
|
mp3an1 |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) → ( 𝑧 +ℎ 𝑣 ) ∈ 𝐴 ) |
21 |
20
|
ad2ant2r |
⊢ ( ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ) ) → ( 𝑧 +ℎ 𝑣 ) ∈ 𝐴 ) |
22 |
21
|
ad2ant2r |
⊢ ( ( ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑥 = ( 𝑧 +ℎ 𝑤 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑦 = ( 𝑣 +ℎ 𝑢 ) ) ) → ( 𝑧 +ℎ 𝑣 ) ∈ 𝐴 ) |
23 |
|
shaddcl |
⊢ ( ( 𝐵 ∈ Sℋ ∧ 𝑤 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) → ( 𝑤 +ℎ 𝑢 ) ∈ 𝐵 ) |
24 |
2 23
|
mp3an1 |
⊢ ( ( 𝑤 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) → ( 𝑤 +ℎ 𝑢 ) ∈ 𝐵 ) |
25 |
24
|
ad2ant2l |
⊢ ( ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ) ) → ( 𝑤 +ℎ 𝑢 ) ∈ 𝐵 ) |
26 |
25
|
ad2ant2r |
⊢ ( ( ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑥 = ( 𝑧 +ℎ 𝑤 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑦 = ( 𝑣 +ℎ 𝑢 ) ) ) → ( 𝑤 +ℎ 𝑢 ) ∈ 𝐵 ) |
27 |
|
oveq12 |
⊢ ( ( 𝑥 = ( 𝑧 +ℎ 𝑤 ) ∧ 𝑦 = ( 𝑣 +ℎ 𝑢 ) ) → ( 𝑥 +ℎ 𝑦 ) = ( ( 𝑧 +ℎ 𝑤 ) +ℎ ( 𝑣 +ℎ 𝑢 ) ) ) |
28 |
27
|
ad2ant2l |
⊢ ( ( ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑥 = ( 𝑧 +ℎ 𝑤 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑦 = ( 𝑣 +ℎ 𝑢 ) ) ) → ( 𝑥 +ℎ 𝑦 ) = ( ( 𝑧 +ℎ 𝑤 ) +ℎ ( 𝑣 +ℎ 𝑢 ) ) ) |
29 |
1
|
sheli |
⊢ ( 𝑧 ∈ 𝐴 → 𝑧 ∈ ℋ ) |
30 |
1
|
sheli |
⊢ ( 𝑣 ∈ 𝐴 → 𝑣 ∈ ℋ ) |
31 |
29 30
|
anim12i |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) → ( 𝑧 ∈ ℋ ∧ 𝑣 ∈ ℋ ) ) |
32 |
2
|
sheli |
⊢ ( 𝑤 ∈ 𝐵 → 𝑤 ∈ ℋ ) |
33 |
2
|
sheli |
⊢ ( 𝑢 ∈ 𝐵 → 𝑢 ∈ ℋ ) |
34 |
32 33
|
anim12i |
⊢ ( ( 𝑤 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) → ( 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) ) |
35 |
|
hvadd4 |
⊢ ( ( ( 𝑧 ∈ ℋ ∧ 𝑣 ∈ ℋ ) ∧ ( 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) ) → ( ( 𝑧 +ℎ 𝑣 ) +ℎ ( 𝑤 +ℎ 𝑢 ) ) = ( ( 𝑧 +ℎ 𝑤 ) +ℎ ( 𝑣 +ℎ 𝑢 ) ) ) |
36 |
31 34 35
|
syl2an |
⊢ ( ( ( 𝑧 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) → ( ( 𝑧 +ℎ 𝑣 ) +ℎ ( 𝑤 +ℎ 𝑢 ) ) = ( ( 𝑧 +ℎ 𝑤 ) +ℎ ( 𝑣 +ℎ 𝑢 ) ) ) |
37 |
36
|
an4s |
⊢ ( ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ) ) → ( ( 𝑧 +ℎ 𝑣 ) +ℎ ( 𝑤 +ℎ 𝑢 ) ) = ( ( 𝑧 +ℎ 𝑤 ) +ℎ ( 𝑣 +ℎ 𝑢 ) ) ) |
38 |
37
|
ad2ant2r |
⊢ ( ( ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑥 = ( 𝑧 +ℎ 𝑤 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑦 = ( 𝑣 +ℎ 𝑢 ) ) ) → ( ( 𝑧 +ℎ 𝑣 ) +ℎ ( 𝑤 +ℎ 𝑢 ) ) = ( ( 𝑧 +ℎ 𝑤 ) +ℎ ( 𝑣 +ℎ 𝑢 ) ) ) |
39 |
28 38
|
eqtr4d |
⊢ ( ( ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑥 = ( 𝑧 +ℎ 𝑤 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑦 = ( 𝑣 +ℎ 𝑢 ) ) ) → ( 𝑥 +ℎ 𝑦 ) = ( ( 𝑧 +ℎ 𝑣 ) +ℎ ( 𝑤 +ℎ 𝑢 ) ) ) |
40 |
|
rspceov |
⊢ ( ( ( 𝑧 +ℎ 𝑣 ) ∈ 𝐴 ∧ ( 𝑤 +ℎ 𝑢 ) ∈ 𝐵 ∧ ( 𝑥 +ℎ 𝑦 ) = ( ( 𝑧 +ℎ 𝑣 ) +ℎ ( 𝑤 +ℎ 𝑢 ) ) ) → ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑥 +ℎ 𝑦 ) = ( 𝑓 +ℎ 𝑔 ) ) |
41 |
22 26 39 40
|
syl3anc |
⊢ ( ( ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑥 = ( 𝑧 +ℎ 𝑤 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑦 = ( 𝑣 +ℎ 𝑢 ) ) ) → ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑥 +ℎ 𝑦 ) = ( 𝑓 +ℎ 𝑔 ) ) |
42 |
41
|
ancoms |
⊢ ( ( ( ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑦 = ( 𝑣 +ℎ 𝑢 ) ) ∧ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑥 = ( 𝑧 +ℎ 𝑤 ) ) ) → ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑥 +ℎ 𝑦 ) = ( 𝑓 +ℎ 𝑔 ) ) |
43 |
42
|
exp43 |
⊢ ( ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ) → ( 𝑦 = ( 𝑣 +ℎ 𝑢 ) → ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) → ( 𝑥 = ( 𝑧 +ℎ 𝑤 ) → ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑥 +ℎ 𝑦 ) = ( 𝑓 +ℎ 𝑔 ) ) ) ) ) |
44 |
43
|
rexlimivv |
⊢ ( ∃ 𝑣 ∈ 𝐴 ∃ 𝑢 ∈ 𝐵 𝑦 = ( 𝑣 +ℎ 𝑢 ) → ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) → ( 𝑥 = ( 𝑧 +ℎ 𝑤 ) → ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑥 +ℎ 𝑦 ) = ( 𝑓 +ℎ 𝑔 ) ) ) ) |
45 |
44
|
com3l |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) → ( 𝑥 = ( 𝑧 +ℎ 𝑤 ) → ( ∃ 𝑣 ∈ 𝐴 ∃ 𝑢 ∈ 𝐵 𝑦 = ( 𝑣 +ℎ 𝑢 ) → ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑥 +ℎ 𝑦 ) = ( 𝑓 +ℎ 𝑔 ) ) ) ) |
46 |
45
|
rexlimivv |
⊢ ( ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑥 = ( 𝑧 +ℎ 𝑤 ) → ( ∃ 𝑣 ∈ 𝐴 ∃ 𝑢 ∈ 𝐵 𝑦 = ( 𝑣 +ℎ 𝑢 ) → ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑥 +ℎ 𝑦 ) = ( 𝑓 +ℎ 𝑔 ) ) ) |
47 |
46
|
imp |
⊢ ( ( ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑥 = ( 𝑧 +ℎ 𝑤 ) ∧ ∃ 𝑣 ∈ 𝐴 ∃ 𝑢 ∈ 𝐵 𝑦 = ( 𝑣 +ℎ 𝑢 ) ) → ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑥 +ℎ 𝑦 ) = ( 𝑓 +ℎ 𝑔 ) ) |
48 |
17 18 47
|
syl2anb |
⊢ ( ( 𝑥 ∈ ( 𝐴 +ℋ 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ) → ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑥 +ℎ 𝑦 ) = ( 𝑓 +ℎ 𝑔 ) ) |
49 |
1 2
|
shseli |
⊢ ( ( 𝑥 +ℎ 𝑦 ) ∈ ( 𝐴 +ℋ 𝐵 ) ↔ ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑥 +ℎ 𝑦 ) = ( 𝑓 +ℎ 𝑔 ) ) |
50 |
48 49
|
sylibr |
⊢ ( ( 𝑥 ∈ ( 𝐴 +ℋ 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ) → ( 𝑥 +ℎ 𝑦 ) ∈ ( 𝐴 +ℋ 𝐵 ) ) |
51 |
50
|
rgen2 |
⊢ ∀ 𝑥 ∈ ( 𝐴 +ℋ 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ( 𝑥 +ℎ 𝑦 ) ∈ ( 𝐴 +ℋ 𝐵 ) |
52 |
|
shmulcl |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝑥 ∈ ℂ ∧ 𝑣 ∈ 𝐴 ) → ( 𝑥 ·ℎ 𝑣 ) ∈ 𝐴 ) |
53 |
1 52
|
mp3an1 |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑣 ∈ 𝐴 ) → ( 𝑥 ·ℎ 𝑣 ) ∈ 𝐴 ) |
54 |
53
|
adantrr |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑣 ∈ 𝐴 ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑦 = ( 𝑣 +ℎ 𝑢 ) ) ) ) → ( 𝑥 ·ℎ 𝑣 ) ∈ 𝐴 ) |
55 |
|
shmulcl |
⊢ ( ( 𝐵 ∈ Sℋ ∧ 𝑥 ∈ ℂ ∧ 𝑢 ∈ 𝐵 ) → ( 𝑥 ·ℎ 𝑢 ) ∈ 𝐵 ) |
56 |
2 55
|
mp3an1 |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑢 ∈ 𝐵 ) → ( 𝑥 ·ℎ 𝑢 ) ∈ 𝐵 ) |
57 |
56
|
adantrr |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑦 = ( 𝑣 +ℎ 𝑢 ) ) ) → ( 𝑥 ·ℎ 𝑢 ) ∈ 𝐵 ) |
58 |
57
|
adantrl |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑣 ∈ 𝐴 ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑦 = ( 𝑣 +ℎ 𝑢 ) ) ) ) → ( 𝑥 ·ℎ 𝑢 ) ∈ 𝐵 ) |
59 |
|
oveq2 |
⊢ ( 𝑦 = ( 𝑣 +ℎ 𝑢 ) → ( 𝑥 ·ℎ 𝑦 ) = ( 𝑥 ·ℎ ( 𝑣 +ℎ 𝑢 ) ) ) |
60 |
59
|
adantl |
⊢ ( ( 𝑢 ∈ 𝐵 ∧ 𝑦 = ( 𝑣 +ℎ 𝑢 ) ) → ( 𝑥 ·ℎ 𝑦 ) = ( 𝑥 ·ℎ ( 𝑣 +ℎ 𝑢 ) ) ) |
61 |
60
|
ad2antll |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑣 ∈ 𝐴 ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑦 = ( 𝑣 +ℎ 𝑢 ) ) ) ) → ( 𝑥 ·ℎ 𝑦 ) = ( 𝑥 ·ℎ ( 𝑣 +ℎ 𝑢 ) ) ) |
62 |
|
id |
⊢ ( 𝑥 ∈ ℂ → 𝑥 ∈ ℂ ) |
63 |
|
ax-hvdistr1 |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑣 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( 𝑥 ·ℎ ( 𝑣 +ℎ 𝑢 ) ) = ( ( 𝑥 ·ℎ 𝑣 ) +ℎ ( 𝑥 ·ℎ 𝑢 ) ) ) |
64 |
62 30 33 63
|
syl3an |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ) → ( 𝑥 ·ℎ ( 𝑣 +ℎ 𝑢 ) ) = ( ( 𝑥 ·ℎ 𝑣 ) +ℎ ( 𝑥 ·ℎ 𝑢 ) ) ) |
65 |
64
|
3expb |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ) ) → ( 𝑥 ·ℎ ( 𝑣 +ℎ 𝑢 ) ) = ( ( 𝑥 ·ℎ 𝑣 ) +ℎ ( 𝑥 ·ℎ 𝑢 ) ) ) |
66 |
65
|
adantrrr |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑣 ∈ 𝐴 ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑦 = ( 𝑣 +ℎ 𝑢 ) ) ) ) → ( 𝑥 ·ℎ ( 𝑣 +ℎ 𝑢 ) ) = ( ( 𝑥 ·ℎ 𝑣 ) +ℎ ( 𝑥 ·ℎ 𝑢 ) ) ) |
67 |
61 66
|
eqtrd |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑣 ∈ 𝐴 ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑦 = ( 𝑣 +ℎ 𝑢 ) ) ) ) → ( 𝑥 ·ℎ 𝑦 ) = ( ( 𝑥 ·ℎ 𝑣 ) +ℎ ( 𝑥 ·ℎ 𝑢 ) ) ) |
68 |
|
rspceov |
⊢ ( ( ( 𝑥 ·ℎ 𝑣 ) ∈ 𝐴 ∧ ( 𝑥 ·ℎ 𝑢 ) ∈ 𝐵 ∧ ( 𝑥 ·ℎ 𝑦 ) = ( ( 𝑥 ·ℎ 𝑣 ) +ℎ ( 𝑥 ·ℎ 𝑢 ) ) ) → ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑥 ·ℎ 𝑦 ) = ( 𝑓 +ℎ 𝑔 ) ) |
69 |
54 58 67 68
|
syl3anc |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑣 ∈ 𝐴 ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑦 = ( 𝑣 +ℎ 𝑢 ) ) ) ) → ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑥 ·ℎ 𝑦 ) = ( 𝑓 +ℎ 𝑔 ) ) |
70 |
69
|
ancoms |
⊢ ( ( ( 𝑣 ∈ 𝐴 ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑦 = ( 𝑣 +ℎ 𝑢 ) ) ) ∧ 𝑥 ∈ ℂ ) → ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑥 ·ℎ 𝑦 ) = ( 𝑓 +ℎ 𝑔 ) ) |
71 |
70
|
exp42 |
⊢ ( 𝑣 ∈ 𝐴 → ( 𝑢 ∈ 𝐵 → ( 𝑦 = ( 𝑣 +ℎ 𝑢 ) → ( 𝑥 ∈ ℂ → ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑥 ·ℎ 𝑦 ) = ( 𝑓 +ℎ 𝑔 ) ) ) ) ) |
72 |
71
|
imp |
⊢ ( ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ) → ( 𝑦 = ( 𝑣 +ℎ 𝑢 ) → ( 𝑥 ∈ ℂ → ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑥 ·ℎ 𝑦 ) = ( 𝑓 +ℎ 𝑔 ) ) ) ) |
73 |
72
|
rexlimivv |
⊢ ( ∃ 𝑣 ∈ 𝐴 ∃ 𝑢 ∈ 𝐵 𝑦 = ( 𝑣 +ℎ 𝑢 ) → ( 𝑥 ∈ ℂ → ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑥 ·ℎ 𝑦 ) = ( 𝑓 +ℎ 𝑔 ) ) ) |
74 |
73
|
impcom |
⊢ ( ( 𝑥 ∈ ℂ ∧ ∃ 𝑣 ∈ 𝐴 ∃ 𝑢 ∈ 𝐵 𝑦 = ( 𝑣 +ℎ 𝑢 ) ) → ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑥 ·ℎ 𝑦 ) = ( 𝑓 +ℎ 𝑔 ) ) |
75 |
18 74
|
sylan2b |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ) → ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑥 ·ℎ 𝑦 ) = ( 𝑓 +ℎ 𝑔 ) ) |
76 |
1 2
|
shseli |
⊢ ( ( 𝑥 ·ℎ 𝑦 ) ∈ ( 𝐴 +ℋ 𝐵 ) ↔ ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑥 ·ℎ 𝑦 ) = ( 𝑓 +ℎ 𝑔 ) ) |
77 |
75 76
|
sylibr |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ) → ( 𝑥 ·ℎ 𝑦 ) ∈ ( 𝐴 +ℋ 𝐵 ) ) |
78 |
77
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ( 𝑥 ·ℎ 𝑦 ) ∈ ( 𝐴 +ℋ 𝐵 ) |
79 |
51 78
|
pm3.2i |
⊢ ( ∀ 𝑥 ∈ ( 𝐴 +ℋ 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ( 𝑥 +ℎ 𝑦 ) ∈ ( 𝐴 +ℋ 𝐵 ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ( 𝑥 ·ℎ 𝑦 ) ∈ ( 𝐴 +ℋ 𝐵 ) ) |
80 |
|
issh2 |
⊢ ( ( 𝐴 +ℋ 𝐵 ) ∈ Sℋ ↔ ( ( ( 𝐴 +ℋ 𝐵 ) ⊆ ℋ ∧ 0ℎ ∈ ( 𝐴 +ℋ 𝐵 ) ) ∧ ( ∀ 𝑥 ∈ ( 𝐴 +ℋ 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ( 𝑥 +ℎ 𝑦 ) ∈ ( 𝐴 +ℋ 𝐵 ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ( 𝑥 ·ℎ 𝑦 ) ∈ ( 𝐴 +ℋ 𝐵 ) ) ) ) |
81 |
16 79 80
|
mpbir2an |
⊢ ( 𝐴 +ℋ 𝐵 ) ∈ Sℋ |