Step |
Hyp |
Ref |
Expression |
1 |
|
shel |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℋ ) |
2 |
|
shel |
⊢ ( ( 𝐵 ∈ Sℋ ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ ℋ ) |
3 |
1 2
|
anim12i |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐵 ∈ Sℋ ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ) |
4 |
3
|
an4s |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ) |
5 |
|
ax-hvcom |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑦 +ℎ 𝑧 ) = ( 𝑧 +ℎ 𝑦 ) ) |
6 |
4 5
|
syl |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 +ℎ 𝑧 ) = ( 𝑧 +ℎ 𝑦 ) ) |
7 |
6
|
eqeq2d |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) ↔ 𝑥 = ( 𝑧 +ℎ 𝑦 ) ) ) |
8 |
7
|
2rexbidva |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 +ℎ 𝑧 ) ↔ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑧 +ℎ 𝑦 ) ) ) |
9 |
|
rexcom |
⊢ ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑧 +ℎ 𝑦 ) ↔ ∃ 𝑧 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 𝑥 = ( 𝑧 +ℎ 𝑦 ) ) |
10 |
8 9
|
bitrdi |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 +ℎ 𝑧 ) ↔ ∃ 𝑧 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 𝑥 = ( 𝑧 +ℎ 𝑦 ) ) ) |
11 |
|
shsel |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝑥 ∈ ( 𝐴 +ℋ 𝐵 ) ↔ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) ) |
12 |
|
shsel |
⊢ ( ( 𝐵 ∈ Sℋ ∧ 𝐴 ∈ Sℋ ) → ( 𝑥 ∈ ( 𝐵 +ℋ 𝐴 ) ↔ ∃ 𝑧 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 𝑥 = ( 𝑧 +ℎ 𝑦 ) ) ) |
13 |
12
|
ancoms |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝑥 ∈ ( 𝐵 +ℋ 𝐴 ) ↔ ∃ 𝑧 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 𝑥 = ( 𝑧 +ℎ 𝑦 ) ) ) |
14 |
10 11 13
|
3bitr4d |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝑥 ∈ ( 𝐴 +ℋ 𝐵 ) ↔ 𝑥 ∈ ( 𝐵 +ℋ 𝐴 ) ) ) |
15 |
14
|
eqrdv |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 +ℋ 𝐵 ) = ( 𝐵 +ℋ 𝐴 ) ) |