Metamath Proof Explorer


Theorem shscomi

Description: Commutative law for subspace sum. (Contributed by NM, 17-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses shincl.1 𝐴S
shincl.2 𝐵S
Assertion shscomi ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 )

Proof

Step Hyp Ref Expression
1 shincl.1 𝐴S
2 shincl.2 𝐵S
3 shscom ( ( 𝐴S𝐵S ) → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) )
4 1 2 3 mp2an ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 )