Step |
Hyp |
Ref |
Expression |
1 |
|
shsval |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 +ℋ 𝐵 ) = ( +ℎ “ ( 𝐴 × 𝐵 ) ) ) |
2 |
1
|
eleq2d |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ↔ 𝐶 ∈ ( +ℎ “ ( 𝐴 × 𝐵 ) ) ) ) |
3 |
|
ax-hfvadd |
⊢ +ℎ : ( ℋ × ℋ ) ⟶ ℋ |
4 |
|
ffn |
⊢ ( +ℎ : ( ℋ × ℋ ) ⟶ ℋ → +ℎ Fn ( ℋ × ℋ ) ) |
5 |
3 4
|
ax-mp |
⊢ +ℎ Fn ( ℋ × ℋ ) |
6 |
|
shss |
⊢ ( 𝐴 ∈ Sℋ → 𝐴 ⊆ ℋ ) |
7 |
|
shss |
⊢ ( 𝐵 ∈ Sℋ → 𝐵 ⊆ ℋ ) |
8 |
|
xpss12 |
⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴 × 𝐵 ) ⊆ ( ℋ × ℋ ) ) |
9 |
6 7 8
|
syl2an |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 × 𝐵 ) ⊆ ( ℋ × ℋ ) ) |
10 |
|
ovelimab |
⊢ ( ( +ℎ Fn ( ℋ × ℋ ) ∧ ( 𝐴 × 𝐵 ) ⊆ ( ℋ × ℋ ) ) → ( 𝐶 ∈ ( +ℎ “ ( 𝐴 × 𝐵 ) ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑦 ) ) ) |
11 |
5 9 10
|
sylancr |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐶 ∈ ( +ℎ “ ( 𝐴 × 𝐵 ) ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑦 ) ) ) |
12 |
2 11
|
bitrd |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑦 ) ) ) |