| Step | Hyp | Ref | Expression | 
						
							| 1 |  | shsval | ⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  →  ( 𝐴  +ℋ  𝐵 )  =  (  +ℎ   “  ( 𝐴  ×  𝐵 ) ) ) | 
						
							| 2 | 1 | eleq2d | ⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  →  ( 𝐶  ∈  ( 𝐴  +ℋ  𝐵 )  ↔  𝐶  ∈  (  +ℎ   “  ( 𝐴  ×  𝐵 ) ) ) ) | 
						
							| 3 |  | ax-hfvadd | ⊢  +ℎ  : (  ℋ  ×   ℋ ) ⟶  ℋ | 
						
							| 4 |  | ffn | ⊢ (  +ℎ  : (  ℋ  ×   ℋ ) ⟶  ℋ  →   +ℎ   Fn  (  ℋ  ×   ℋ ) ) | 
						
							| 5 | 3 4 | ax-mp | ⊢  +ℎ   Fn  (  ℋ  ×   ℋ ) | 
						
							| 6 |  | shss | ⊢ ( 𝐴  ∈   Sℋ   →  𝐴  ⊆   ℋ ) | 
						
							| 7 |  | shss | ⊢ ( 𝐵  ∈   Sℋ   →  𝐵  ⊆   ℋ ) | 
						
							| 8 |  | xpss12 | ⊢ ( ( 𝐴  ⊆   ℋ  ∧  𝐵  ⊆   ℋ )  →  ( 𝐴  ×  𝐵 )  ⊆  (  ℋ  ×   ℋ ) ) | 
						
							| 9 | 6 7 8 | syl2an | ⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  →  ( 𝐴  ×  𝐵 )  ⊆  (  ℋ  ×   ℋ ) ) | 
						
							| 10 |  | ovelimab | ⊢ ( (  +ℎ   Fn  (  ℋ  ×   ℋ )  ∧  ( 𝐴  ×  𝐵 )  ⊆  (  ℋ  ×   ℋ ) )  →  ( 𝐶  ∈  (  +ℎ   “  ( 𝐴  ×  𝐵 ) )  ↔  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝐶  =  ( 𝑥  +ℎ  𝑦 ) ) ) | 
						
							| 11 | 5 9 10 | sylancr | ⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  →  ( 𝐶  ∈  (  +ℎ   “  ( 𝐴  ×  𝐵 ) )  ↔  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝐶  =  ( 𝑥  +ℎ  𝑦 ) ) ) | 
						
							| 12 | 2 11 | bitrd | ⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  →  ( 𝐶  ∈  ( 𝐴  +ℋ  𝐵 )  ↔  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝐶  =  ( 𝑥  +ℎ  𝑦 ) ) ) |