Metamath Proof Explorer


Theorem shsel

Description: Membership in the subspace sum of two Hilbert subspaces. (Contributed by NM, 14-Dec-2004) (Revised by Mario Carneiro, 29-Jan-2014) (New usage is discouraged.)

Ref Expression
Assertion shsel ( ( 𝐴S𝐵S ) → ( 𝐶 ∈ ( 𝐴 + 𝐵 ) ↔ ∃ 𝑥𝐴𝑦𝐵 𝐶 = ( 𝑥 + 𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 shsval ( ( 𝐴S𝐵S ) → ( 𝐴 + 𝐵 ) = ( + “ ( 𝐴 × 𝐵 ) ) )
2 1 eleq2d ( ( 𝐴S𝐵S ) → ( 𝐶 ∈ ( 𝐴 + 𝐵 ) ↔ 𝐶 ∈ ( + “ ( 𝐴 × 𝐵 ) ) ) )
3 ax-hfvadd + : ( ℋ × ℋ ) ⟶ ℋ
4 ffn ( + : ( ℋ × ℋ ) ⟶ ℋ → + Fn ( ℋ × ℋ ) )
5 3 4 ax-mp + Fn ( ℋ × ℋ )
6 shss ( 𝐴S𝐴 ⊆ ℋ )
7 shss ( 𝐵S𝐵 ⊆ ℋ )
8 xpss12 ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴 × 𝐵 ) ⊆ ( ℋ × ℋ ) )
9 6 7 8 syl2an ( ( 𝐴S𝐵S ) → ( 𝐴 × 𝐵 ) ⊆ ( ℋ × ℋ ) )
10 ovelimab ( ( + Fn ( ℋ × ℋ ) ∧ ( 𝐴 × 𝐵 ) ⊆ ( ℋ × ℋ ) ) → ( 𝐶 ∈ ( + “ ( 𝐴 × 𝐵 ) ) ↔ ∃ 𝑥𝐴𝑦𝐵 𝐶 = ( 𝑥 + 𝑦 ) ) )
11 5 9 10 sylancr ( ( 𝐴S𝐵S ) → ( 𝐶 ∈ ( + “ ( 𝐴 × 𝐵 ) ) ↔ ∃ 𝑥𝐴𝑦𝐵 𝐶 = ( 𝑥 + 𝑦 ) ) )
12 2 11 bitrd ( ( 𝐴S𝐵S ) → ( 𝐶 ∈ ( 𝐴 + 𝐵 ) ↔ ∃ 𝑥𝐴𝑦𝐵 𝐶 = ( 𝑥 + 𝑦 ) ) )