| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							shel | 
							⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐶  ∈  𝐴 )  →  𝐶  ∈   ℋ )  | 
						
						
							| 2 | 
							
								
							 | 
							ax-hvaddid | 
							⊢ ( 𝐶  ∈   ℋ  →  ( 𝐶  +ℎ  0ℎ )  =  𝐶 )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							syl | 
							⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐶  ∈  𝐴 )  →  ( 𝐶  +ℎ  0ℎ )  =  𝐶 )  | 
						
						
							| 4 | 
							
								3
							 | 
							adantlr | 
							⊢ ( ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  ∧  𝐶  ∈  𝐴 )  →  ( 𝐶  +ℎ  0ℎ )  =  𝐶 )  | 
						
						
							| 5 | 
							
								
							 | 
							sh0 | 
							⊢ ( 𝐵  ∈   Sℋ   →  0ℎ  ∈  𝐵 )  | 
						
						
							| 6 | 
							
								5
							 | 
							adantl | 
							⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  →  0ℎ  ∈  𝐵 )  | 
						
						
							| 7 | 
							
								
							 | 
							shsva | 
							⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  →  ( ( 𝐶  ∈  𝐴  ∧  0ℎ  ∈  𝐵 )  →  ( 𝐶  +ℎ  0ℎ )  ∈  ( 𝐴  +ℋ  𝐵 ) ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							mpan2d | 
							⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  →  ( 𝐶  ∈  𝐴  →  ( 𝐶  +ℎ  0ℎ )  ∈  ( 𝐴  +ℋ  𝐵 ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							imp | 
							⊢ ( ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  ∧  𝐶  ∈  𝐴 )  →  ( 𝐶  +ℎ  0ℎ )  ∈  ( 𝐴  +ℋ  𝐵 ) )  | 
						
						
							| 10 | 
							
								4 9
							 | 
							eqeltrrd | 
							⊢ ( ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  ∧  𝐶  ∈  𝐴 )  →  𝐶  ∈  ( 𝐴  +ℋ  𝐵 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							ex | 
							⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  →  ( 𝐶  ∈  𝐴  →  𝐶  ∈  ( 𝐴  +ℋ  𝐵 ) ) )  |