Metamath Proof Explorer


Theorem shsel1

Description: A subspace sum contains a member of one of its subspaces. (Contributed by NM, 15-Dec-2004) (New usage is discouraged.)

Ref Expression
Assertion shsel1 ( ( 𝐴S𝐵S ) → ( 𝐶𝐴𝐶 ∈ ( 𝐴 + 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 shel ( ( 𝐴S𝐶𝐴 ) → 𝐶 ∈ ℋ )
2 ax-hvaddid ( 𝐶 ∈ ℋ → ( 𝐶 + 0 ) = 𝐶 )
3 1 2 syl ( ( 𝐴S𝐶𝐴 ) → ( 𝐶 + 0 ) = 𝐶 )
4 3 adantlr ( ( ( 𝐴S𝐵S ) ∧ 𝐶𝐴 ) → ( 𝐶 + 0 ) = 𝐶 )
5 sh0 ( 𝐵S → 0𝐵 )
6 5 adantl ( ( 𝐴S𝐵S ) → 0𝐵 )
7 shsva ( ( 𝐴S𝐵S ) → ( ( 𝐶𝐴 ∧ 0𝐵 ) → ( 𝐶 + 0 ) ∈ ( 𝐴 + 𝐵 ) ) )
8 6 7 mpan2d ( ( 𝐴S𝐵S ) → ( 𝐶𝐴 → ( 𝐶 + 0 ) ∈ ( 𝐴 + 𝐵 ) ) )
9 8 imp ( ( ( 𝐴S𝐵S ) ∧ 𝐶𝐴 ) → ( 𝐶 + 0 ) ∈ ( 𝐴 + 𝐵 ) )
10 4 9 eqeltrrd ( ( ( 𝐴S𝐵S ) ∧ 𝐶𝐴 ) → 𝐶 ∈ ( 𝐴 + 𝐵 ) )
11 10 ex ( ( 𝐴S𝐵S ) → ( 𝐶𝐴𝐶 ∈ ( 𝐴 + 𝐵 ) ) )