Step |
Hyp |
Ref |
Expression |
1 |
|
shel |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐶 ∈ 𝐴 ) → 𝐶 ∈ ℋ ) |
2 |
|
ax-hvaddid |
⊢ ( 𝐶 ∈ ℋ → ( 𝐶 +ℎ 0ℎ ) = 𝐶 ) |
3 |
1 2
|
syl |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐶 ∈ 𝐴 ) → ( 𝐶 +ℎ 0ℎ ) = 𝐶 ) |
4 |
3
|
adantlr |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝐶 ∈ 𝐴 ) → ( 𝐶 +ℎ 0ℎ ) = 𝐶 ) |
5 |
|
sh0 |
⊢ ( 𝐵 ∈ Sℋ → 0ℎ ∈ 𝐵 ) |
6 |
5
|
adantl |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → 0ℎ ∈ 𝐵 ) |
7 |
|
shsva |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( ( 𝐶 ∈ 𝐴 ∧ 0ℎ ∈ 𝐵 ) → ( 𝐶 +ℎ 0ℎ ) ∈ ( 𝐴 +ℋ 𝐵 ) ) ) |
8 |
6 7
|
mpan2d |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐶 ∈ 𝐴 → ( 𝐶 +ℎ 0ℎ ) ∈ ( 𝐴 +ℋ 𝐵 ) ) ) |
9 |
8
|
imp |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝐶 ∈ 𝐴 ) → ( 𝐶 +ℎ 0ℎ ) ∈ ( 𝐴 +ℋ 𝐵 ) ) |
10 |
4 9
|
eqeltrrd |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝐶 ∈ 𝐴 ) → 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ) |
11 |
10
|
ex |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐶 ∈ 𝐴 → 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) |