Description: A subspace sum contains a member of one of its subspaces. (Contributed by NM, 15-Dec-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | shsel2 | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐶 ∈ 𝐵 → 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shsel1 | ⊢ ( ( 𝐵 ∈ Sℋ ∧ 𝐴 ∈ Sℋ ) → ( 𝐶 ∈ 𝐵 → 𝐶 ∈ ( 𝐵 +ℋ 𝐴 ) ) ) | |
2 | 1 | ancoms | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐶 ∈ 𝐵 → 𝐶 ∈ ( 𝐵 +ℋ 𝐴 ) ) ) |
3 | shscom | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 +ℋ 𝐵 ) = ( 𝐵 +ℋ 𝐴 ) ) | |
4 | 3 | eleq2d | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ↔ 𝐶 ∈ ( 𝐵 +ℋ 𝐴 ) ) ) |
5 | 2 4 | sylibrd | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐶 ∈ 𝐵 → 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) |