| Step | Hyp | Ref | Expression | 
						
							| 1 |  | shsel | ⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  →  ( 𝐶  ∈  ( 𝐴  +ℋ  𝐵 )  ↔  ∃ 𝑥  ∈  𝐴 ∃ 𝑧  ∈  𝐵 𝐶  =  ( 𝑥  +ℎ  𝑧 ) ) ) | 
						
							| 2 |  | id | ⊢ ( 𝐶  =  ( 𝑥  +ℎ  𝑧 )  →  𝐶  =  ( 𝑥  +ℎ  𝑧 ) ) | 
						
							| 3 |  | shel | ⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈   ℋ ) | 
						
							| 4 |  | shel | ⊢ ( ( 𝐵  ∈   Sℋ   ∧  𝑧  ∈  𝐵 )  →  𝑧  ∈   ℋ ) | 
						
							| 5 |  | hvaddsubval | ⊢ ( ( 𝑥  ∈   ℋ  ∧  𝑧  ∈   ℋ )  →  ( 𝑥  +ℎ  𝑧 )  =  ( 𝑥  −ℎ  ( - 1  ·ℎ  𝑧 ) ) ) | 
						
							| 6 | 3 4 5 | syl2an | ⊢ ( ( ( 𝐴  ∈   Sℋ   ∧  𝑥  ∈  𝐴 )  ∧  ( 𝐵  ∈   Sℋ   ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑥  +ℎ  𝑧 )  =  ( 𝑥  −ℎ  ( - 1  ·ℎ  𝑧 ) ) ) | 
						
							| 7 | 6 | an4s | ⊢ ( ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑥  +ℎ  𝑧 )  =  ( 𝑥  −ℎ  ( - 1  ·ℎ  𝑧 ) ) ) | 
						
							| 8 | 7 | anassrs | ⊢ ( ( ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  ∧  𝑥  ∈  𝐴 )  ∧  𝑧  ∈  𝐵 )  →  ( 𝑥  +ℎ  𝑧 )  =  ( 𝑥  −ℎ  ( - 1  ·ℎ  𝑧 ) ) ) | 
						
							| 9 | 2 8 | sylan9eqr | ⊢ ( ( ( ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  ∧  𝑥  ∈  𝐴 )  ∧  𝑧  ∈  𝐵 )  ∧  𝐶  =  ( 𝑥  +ℎ  𝑧 ) )  →  𝐶  =  ( 𝑥  −ℎ  ( - 1  ·ℎ  𝑧 ) ) ) | 
						
							| 10 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 11 |  | shmulcl | ⊢ ( ( 𝐵  ∈   Sℋ   ∧  - 1  ∈  ℂ  ∧  𝑧  ∈  𝐵 )  →  ( - 1  ·ℎ  𝑧 )  ∈  𝐵 ) | 
						
							| 12 | 10 11 | mp3an2 | ⊢ ( ( 𝐵  ∈   Sℋ   ∧  𝑧  ∈  𝐵 )  →  ( - 1  ·ℎ  𝑧 )  ∈  𝐵 ) | 
						
							| 13 | 12 | adantll | ⊢ ( ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  ∧  𝑧  ∈  𝐵 )  →  ( - 1  ·ℎ  𝑧 )  ∈  𝐵 ) | 
						
							| 14 | 13 | adantlr | ⊢ ( ( ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  ∧  𝑥  ∈  𝐴 )  ∧  𝑧  ∈  𝐵 )  →  ( - 1  ·ℎ  𝑧 )  ∈  𝐵 ) | 
						
							| 15 |  | oveq2 | ⊢ ( 𝑦  =  ( - 1  ·ℎ  𝑧 )  →  ( 𝑥  −ℎ  𝑦 )  =  ( 𝑥  −ℎ  ( - 1  ·ℎ  𝑧 ) ) ) | 
						
							| 16 | 15 | rspceeqv | ⊢ ( ( ( - 1  ·ℎ  𝑧 )  ∈  𝐵  ∧  𝐶  =  ( 𝑥  −ℎ  ( - 1  ·ℎ  𝑧 ) ) )  →  ∃ 𝑦  ∈  𝐵 𝐶  =  ( 𝑥  −ℎ  𝑦 ) ) | 
						
							| 17 | 14 16 | sylan | ⊢ ( ( ( ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  ∧  𝑥  ∈  𝐴 )  ∧  𝑧  ∈  𝐵 )  ∧  𝐶  =  ( 𝑥  −ℎ  ( - 1  ·ℎ  𝑧 ) ) )  →  ∃ 𝑦  ∈  𝐵 𝐶  =  ( 𝑥  −ℎ  𝑦 ) ) | 
						
							| 18 | 9 17 | syldan | ⊢ ( ( ( ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  ∧  𝑥  ∈  𝐴 )  ∧  𝑧  ∈  𝐵 )  ∧  𝐶  =  ( 𝑥  +ℎ  𝑧 ) )  →  ∃ 𝑦  ∈  𝐵 𝐶  =  ( 𝑥  −ℎ  𝑦 ) ) | 
						
							| 19 | 18 | rexlimdva2 | ⊢ ( ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  ∧  𝑥  ∈  𝐴 )  →  ( ∃ 𝑧  ∈  𝐵 𝐶  =  ( 𝑥  +ℎ  𝑧 )  →  ∃ 𝑦  ∈  𝐵 𝐶  =  ( 𝑥  −ℎ  𝑦 ) ) ) | 
						
							| 20 |  | id | ⊢ ( 𝐶  =  ( 𝑥  −ℎ  𝑦 )  →  𝐶  =  ( 𝑥  −ℎ  𝑦 ) ) | 
						
							| 21 |  | shel | ⊢ ( ( 𝐵  ∈   Sℋ   ∧  𝑦  ∈  𝐵 )  →  𝑦  ∈   ℋ ) | 
						
							| 22 |  | hvsubval | ⊢ ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( 𝑥  −ℎ  𝑦 )  =  ( 𝑥  +ℎ  ( - 1  ·ℎ  𝑦 ) ) ) | 
						
							| 23 | 3 21 22 | syl2an | ⊢ ( ( ( 𝐴  ∈   Sℋ   ∧  𝑥  ∈  𝐴 )  ∧  ( 𝐵  ∈   Sℋ   ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥  −ℎ  𝑦 )  =  ( 𝑥  +ℎ  ( - 1  ·ℎ  𝑦 ) ) ) | 
						
							| 24 | 23 | an4s | ⊢ ( ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥  −ℎ  𝑦 )  =  ( 𝑥  +ℎ  ( - 1  ·ℎ  𝑦 ) ) ) | 
						
							| 25 | 24 | anassrs | ⊢ ( ( ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥  −ℎ  𝑦 )  =  ( 𝑥  +ℎ  ( - 1  ·ℎ  𝑦 ) ) ) | 
						
							| 26 | 20 25 | sylan9eqr | ⊢ ( ( ( ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  ∧  𝐶  =  ( 𝑥  −ℎ  𝑦 ) )  →  𝐶  =  ( 𝑥  +ℎ  ( - 1  ·ℎ  𝑦 ) ) ) | 
						
							| 27 |  | shmulcl | ⊢ ( ( 𝐵  ∈   Sℋ   ∧  - 1  ∈  ℂ  ∧  𝑦  ∈  𝐵 )  →  ( - 1  ·ℎ  𝑦 )  ∈  𝐵 ) | 
						
							| 28 | 10 27 | mp3an2 | ⊢ ( ( 𝐵  ∈   Sℋ   ∧  𝑦  ∈  𝐵 )  →  ( - 1  ·ℎ  𝑦 )  ∈  𝐵 ) | 
						
							| 29 | 28 | adantll | ⊢ ( ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  ∧  𝑦  ∈  𝐵 )  →  ( - 1  ·ℎ  𝑦 )  ∈  𝐵 ) | 
						
							| 30 | 29 | adantlr | ⊢ ( ( ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  →  ( - 1  ·ℎ  𝑦 )  ∈  𝐵 ) | 
						
							| 31 |  | oveq2 | ⊢ ( 𝑧  =  ( - 1  ·ℎ  𝑦 )  →  ( 𝑥  +ℎ  𝑧 )  =  ( 𝑥  +ℎ  ( - 1  ·ℎ  𝑦 ) ) ) | 
						
							| 32 | 31 | rspceeqv | ⊢ ( ( ( - 1  ·ℎ  𝑦 )  ∈  𝐵  ∧  𝐶  =  ( 𝑥  +ℎ  ( - 1  ·ℎ  𝑦 ) ) )  →  ∃ 𝑧  ∈  𝐵 𝐶  =  ( 𝑥  +ℎ  𝑧 ) ) | 
						
							| 33 | 30 32 | sylan | ⊢ ( ( ( ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  ∧  𝐶  =  ( 𝑥  +ℎ  ( - 1  ·ℎ  𝑦 ) ) )  →  ∃ 𝑧  ∈  𝐵 𝐶  =  ( 𝑥  +ℎ  𝑧 ) ) | 
						
							| 34 | 26 33 | syldan | ⊢ ( ( ( ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  ∧  𝐶  =  ( 𝑥  −ℎ  𝑦 ) )  →  ∃ 𝑧  ∈  𝐵 𝐶  =  ( 𝑥  +ℎ  𝑧 ) ) | 
						
							| 35 | 34 | rexlimdva2 | ⊢ ( ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  ∧  𝑥  ∈  𝐴 )  →  ( ∃ 𝑦  ∈  𝐵 𝐶  =  ( 𝑥  −ℎ  𝑦 )  →  ∃ 𝑧  ∈  𝐵 𝐶  =  ( 𝑥  +ℎ  𝑧 ) ) ) | 
						
							| 36 | 19 35 | impbid | ⊢ ( ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  ∧  𝑥  ∈  𝐴 )  →  ( ∃ 𝑧  ∈  𝐵 𝐶  =  ( 𝑥  +ℎ  𝑧 )  ↔  ∃ 𝑦  ∈  𝐵 𝐶  =  ( 𝑥  −ℎ  𝑦 ) ) ) | 
						
							| 37 | 36 | rexbidva | ⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  →  ( ∃ 𝑥  ∈  𝐴 ∃ 𝑧  ∈  𝐵 𝐶  =  ( 𝑥  +ℎ  𝑧 )  ↔  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝐶  =  ( 𝑥  −ℎ  𝑦 ) ) ) | 
						
							| 38 | 1 37 | bitrd | ⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  →  ( 𝐶  ∈  ( 𝐴  +ℋ  𝐵 )  ↔  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝐶  =  ( 𝑥  −ℎ  𝑦 ) ) ) |