Step |
Hyp |
Ref |
Expression |
1 |
|
shsel |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑧 ) ) ) |
2 |
|
id |
⊢ ( 𝐶 = ( 𝑥 +ℎ 𝑧 ) → 𝐶 = ( 𝑥 +ℎ 𝑧 ) ) |
3 |
|
shel |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℋ ) |
4 |
|
shel |
⊢ ( ( 𝐵 ∈ Sℋ ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ ℋ ) |
5 |
|
hvaddsubval |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑥 +ℎ 𝑧 ) = ( 𝑥 −ℎ ( - 1 ·ℎ 𝑧 ) ) ) |
6 |
3 4 5
|
syl2an |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐵 ∈ Sℋ ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 +ℎ 𝑧 ) = ( 𝑥 −ℎ ( - 1 ·ℎ 𝑧 ) ) ) |
7 |
6
|
an4s |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 +ℎ 𝑧 ) = ( 𝑥 −ℎ ( - 1 ·ℎ 𝑧 ) ) ) |
8 |
7
|
anassrs |
⊢ ( ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑥 +ℎ 𝑧 ) = ( 𝑥 −ℎ ( - 1 ·ℎ 𝑧 ) ) ) |
9 |
2 8
|
sylan9eqr |
⊢ ( ( ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝐶 = ( 𝑥 +ℎ 𝑧 ) ) → 𝐶 = ( 𝑥 −ℎ ( - 1 ·ℎ 𝑧 ) ) ) |
10 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
11 |
|
shmulcl |
⊢ ( ( 𝐵 ∈ Sℋ ∧ - 1 ∈ ℂ ∧ 𝑧 ∈ 𝐵 ) → ( - 1 ·ℎ 𝑧 ) ∈ 𝐵 ) |
12 |
10 11
|
mp3an2 |
⊢ ( ( 𝐵 ∈ Sℋ ∧ 𝑧 ∈ 𝐵 ) → ( - 1 ·ℎ 𝑧 ) ∈ 𝐵 ) |
13 |
12
|
adantll |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝑧 ∈ 𝐵 ) → ( - 1 ·ℎ 𝑧 ) ∈ 𝐵 ) |
14 |
13
|
adantlr |
⊢ ( ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) → ( - 1 ·ℎ 𝑧 ) ∈ 𝐵 ) |
15 |
|
oveq2 |
⊢ ( 𝑦 = ( - 1 ·ℎ 𝑧 ) → ( 𝑥 −ℎ 𝑦 ) = ( 𝑥 −ℎ ( - 1 ·ℎ 𝑧 ) ) ) |
16 |
15
|
rspceeqv |
⊢ ( ( ( - 1 ·ℎ 𝑧 ) ∈ 𝐵 ∧ 𝐶 = ( 𝑥 −ℎ ( - 1 ·ℎ 𝑧 ) ) ) → ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 −ℎ 𝑦 ) ) |
17 |
14 16
|
sylan |
⊢ ( ( ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝐶 = ( 𝑥 −ℎ ( - 1 ·ℎ 𝑧 ) ) ) → ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 −ℎ 𝑦 ) ) |
18 |
9 17
|
syldan |
⊢ ( ( ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝐶 = ( 𝑥 +ℎ 𝑧 ) ) → ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 −ℎ 𝑦 ) ) |
19 |
18
|
rexlimdva2 |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑧 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑧 ) → ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 −ℎ 𝑦 ) ) ) |
20 |
|
id |
⊢ ( 𝐶 = ( 𝑥 −ℎ 𝑦 ) → 𝐶 = ( 𝑥 −ℎ 𝑦 ) ) |
21 |
|
shel |
⊢ ( ( 𝐵 ∈ Sℋ ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ ℋ ) |
22 |
|
hvsubval |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 −ℎ 𝑦 ) = ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) |
23 |
3 21 22
|
syl2an |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐵 ∈ Sℋ ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 −ℎ 𝑦 ) = ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) |
24 |
23
|
an4s |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 −ℎ 𝑦 ) = ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) |
25 |
24
|
anassrs |
⊢ ( ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 −ℎ 𝑦 ) = ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) |
26 |
20 25
|
sylan9eqr |
⊢ ( ( ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝐶 = ( 𝑥 −ℎ 𝑦 ) ) → 𝐶 = ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) |
27 |
|
shmulcl |
⊢ ( ( 𝐵 ∈ Sℋ ∧ - 1 ∈ ℂ ∧ 𝑦 ∈ 𝐵 ) → ( - 1 ·ℎ 𝑦 ) ∈ 𝐵 ) |
28 |
10 27
|
mp3an2 |
⊢ ( ( 𝐵 ∈ Sℋ ∧ 𝑦 ∈ 𝐵 ) → ( - 1 ·ℎ 𝑦 ) ∈ 𝐵 ) |
29 |
28
|
adantll |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝑦 ∈ 𝐵 ) → ( - 1 ·ℎ 𝑦 ) ∈ 𝐵 ) |
30 |
29
|
adantlr |
⊢ ( ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( - 1 ·ℎ 𝑦 ) ∈ 𝐵 ) |
31 |
|
oveq2 |
⊢ ( 𝑧 = ( - 1 ·ℎ 𝑦 ) → ( 𝑥 +ℎ 𝑧 ) = ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) |
32 |
31
|
rspceeqv |
⊢ ( ( ( - 1 ·ℎ 𝑦 ) ∈ 𝐵 ∧ 𝐶 = ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) → ∃ 𝑧 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑧 ) ) |
33 |
30 32
|
sylan |
⊢ ( ( ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝐶 = ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) → ∃ 𝑧 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑧 ) ) |
34 |
26 33
|
syldan |
⊢ ( ( ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝐶 = ( 𝑥 −ℎ 𝑦 ) ) → ∃ 𝑧 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑧 ) ) |
35 |
34
|
rexlimdva2 |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 −ℎ 𝑦 ) → ∃ 𝑧 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑧 ) ) ) |
36 |
19 35
|
impbid |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑧 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑧 ) ↔ ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 −ℎ 𝑦 ) ) ) |
37 |
36
|
rexbidva |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑧 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 −ℎ 𝑦 ) ) ) |
38 |
1 37
|
bitrd |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 −ℎ 𝑦 ) ) ) |