Metamath Proof Explorer
Description: Membership in subspace sum. (Contributed by NM, 4-May-2000)
(New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
shscl.1 |
⊢ 𝐴 ∈ Sℋ |
|
|
shscl.2 |
⊢ 𝐵 ∈ Sℋ |
|
Assertion |
shseli |
⊢ ( 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑦 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
shscl.1 |
⊢ 𝐴 ∈ Sℋ |
2 |
|
shscl.2 |
⊢ 𝐵 ∈ Sℋ |
3 |
|
shsel |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑦 ) ) ) |
4 |
1 2 3
|
mp2an |
⊢ ( 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑦 ) ) |