Metamath Proof Explorer


Theorem shseli

Description: Membership in subspace sum. (Contributed by NM, 4-May-2000) (New usage is discouraged.)

Ref Expression
Hypotheses shscl.1 𝐴S
shscl.2 𝐵S
Assertion shseli ( 𝐶 ∈ ( 𝐴 + 𝐵 ) ↔ ∃ 𝑥𝐴𝑦𝐵 𝐶 = ( 𝑥 + 𝑦 ) )

Proof

Step Hyp Ref Expression
1 shscl.1 𝐴S
2 shscl.2 𝐵S
3 shsel ( ( 𝐴S𝐵S ) → ( 𝐶 ∈ ( 𝐴 + 𝐵 ) ↔ ∃ 𝑥𝐴𝑦𝐵 𝐶 = ( 𝑥 + 𝑦 ) ) )
4 1 2 3 mp2an ( 𝐶 ∈ ( 𝐴 + 𝐵 ) ↔ ∃ 𝑥𝐴𝑦𝐵 𝐶 = ( 𝑥 + 𝑦 ) )