Step |
Hyp |
Ref |
Expression |
1 |
|
shsidm.1 |
⊢ 𝐴 ∈ Sℋ |
2 |
1 1
|
shseli |
⊢ ( 𝑥 ∈ ( 𝐴 +ℋ 𝐴 ) ↔ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐴 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) |
3 |
|
shaddcl |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑦 +ℎ 𝑧 ) ∈ 𝐴 ) |
4 |
1 3
|
mp3an1 |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑦 +ℎ 𝑧 ) ∈ 𝐴 ) |
5 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → ( 𝑥 ∈ 𝐴 ↔ ( 𝑦 +ℎ 𝑧 ) ∈ 𝐴 ) ) |
6 |
4 5
|
syl5ibrcom |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ 𝐴 ) ) |
7 |
6
|
rexlimivv |
⊢ ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐴 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ 𝐴 ) |
8 |
2 7
|
sylbi |
⊢ ( 𝑥 ∈ ( 𝐴 +ℋ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
9 |
8
|
ssriv |
⊢ ( 𝐴 +ℋ 𝐴 ) ⊆ 𝐴 |
10 |
1 1
|
shsub1i |
⊢ 𝐴 ⊆ ( 𝐴 +ℋ 𝐴 ) |
11 |
9 10
|
eqssi |
⊢ ( 𝐴 +ℋ 𝐴 ) = 𝐴 |