| Step | Hyp | Ref | Expression | 
						
							| 1 |  | shsidm.1 | ⊢ 𝐴  ∈   Sℋ | 
						
							| 2 | 1 1 | shseli | ⊢ ( 𝑥  ∈  ( 𝐴  +ℋ  𝐴 )  ↔  ∃ 𝑦  ∈  𝐴 ∃ 𝑧  ∈  𝐴 𝑥  =  ( 𝑦  +ℎ  𝑧 ) ) | 
						
							| 3 |  | shaddcl | ⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  →  ( 𝑦  +ℎ  𝑧 )  ∈  𝐴 ) | 
						
							| 4 | 1 3 | mp3an1 | ⊢ ( ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  →  ( 𝑦  +ℎ  𝑧 )  ∈  𝐴 ) | 
						
							| 5 |  | eleq1 | ⊢ ( 𝑥  =  ( 𝑦  +ℎ  𝑧 )  →  ( 𝑥  ∈  𝐴  ↔  ( 𝑦  +ℎ  𝑧 )  ∈  𝐴 ) ) | 
						
							| 6 | 4 5 | syl5ibrcom | ⊢ ( ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  →  ( 𝑥  =  ( 𝑦  +ℎ  𝑧 )  →  𝑥  ∈  𝐴 ) ) | 
						
							| 7 | 6 | rexlimivv | ⊢ ( ∃ 𝑦  ∈  𝐴 ∃ 𝑧  ∈  𝐴 𝑥  =  ( 𝑦  +ℎ  𝑧 )  →  𝑥  ∈  𝐴 ) | 
						
							| 8 | 2 7 | sylbi | ⊢ ( 𝑥  ∈  ( 𝐴  +ℋ  𝐴 )  →  𝑥  ∈  𝐴 ) | 
						
							| 9 | 8 | ssriv | ⊢ ( 𝐴  +ℋ  𝐴 )  ⊆  𝐴 | 
						
							| 10 | 1 1 | shsub1i | ⊢ 𝐴  ⊆  ( 𝐴  +ℋ  𝐴 ) | 
						
							| 11 | 9 10 | eqssi | ⊢ ( 𝐴  +ℋ  𝐴 )  =  𝐴 |