| Step | Hyp | Ref | Expression | 
						
							| 1 |  | shslub.1 | ⊢ 𝐴  ∈   Sℋ | 
						
							| 2 |  | shslub.2 | ⊢ 𝐵  ∈   Sℋ | 
						
							| 3 |  | shslub.3 | ⊢ 𝐶  ∈   Sℋ | 
						
							| 4 | 1 3 2 | shlessi | ⊢ ( 𝐴  ⊆  𝐶  →  ( 𝐴  +ℋ  𝐵 )  ⊆  ( 𝐶  +ℋ  𝐵 ) ) | 
						
							| 5 | 3 2 | shscomi | ⊢ ( 𝐶  +ℋ  𝐵 )  =  ( 𝐵  +ℋ  𝐶 ) | 
						
							| 6 | 4 5 | sseqtrdi | ⊢ ( 𝐴  ⊆  𝐶  →  ( 𝐴  +ℋ  𝐵 )  ⊆  ( 𝐵  +ℋ  𝐶 ) ) | 
						
							| 7 | 2 3 3 | shlessi | ⊢ ( 𝐵  ⊆  𝐶  →  ( 𝐵  +ℋ  𝐶 )  ⊆  ( 𝐶  +ℋ  𝐶 ) ) | 
						
							| 8 | 3 | shsidmi | ⊢ ( 𝐶  +ℋ  𝐶 )  =  𝐶 | 
						
							| 9 | 7 8 | sseqtrdi | ⊢ ( 𝐵  ⊆  𝐶  →  ( 𝐵  +ℋ  𝐶 )  ⊆  𝐶 ) | 
						
							| 10 | 6 9 | sylan9ss | ⊢ ( ( 𝐴  ⊆  𝐶  ∧  𝐵  ⊆  𝐶 )  →  ( 𝐴  +ℋ  𝐵 )  ⊆  𝐶 ) | 
						
							| 11 | 1 2 | shsub1i | ⊢ 𝐴  ⊆  ( 𝐴  +ℋ  𝐵 ) | 
						
							| 12 |  | sstr | ⊢ ( ( 𝐴  ⊆  ( 𝐴  +ℋ  𝐵 )  ∧  ( 𝐴  +ℋ  𝐵 )  ⊆  𝐶 )  →  𝐴  ⊆  𝐶 ) | 
						
							| 13 | 11 12 | mpan | ⊢ ( ( 𝐴  +ℋ  𝐵 )  ⊆  𝐶  →  𝐴  ⊆  𝐶 ) | 
						
							| 14 | 2 1 | shsub2i | ⊢ 𝐵  ⊆  ( 𝐴  +ℋ  𝐵 ) | 
						
							| 15 |  | sstr | ⊢ ( ( 𝐵  ⊆  ( 𝐴  +ℋ  𝐵 )  ∧  ( 𝐴  +ℋ  𝐵 )  ⊆  𝐶 )  →  𝐵  ⊆  𝐶 ) | 
						
							| 16 | 14 15 | mpan | ⊢ ( ( 𝐴  +ℋ  𝐵 )  ⊆  𝐶  →  𝐵  ⊆  𝐶 ) | 
						
							| 17 | 13 16 | jca | ⊢ ( ( 𝐴  +ℋ  𝐵 )  ⊆  𝐶  →  ( 𝐴  ⊆  𝐶  ∧  𝐵  ⊆  𝐶 ) ) | 
						
							| 18 | 10 17 | impbii | ⊢ ( ( 𝐴  ⊆  𝐶  ∧  𝐵  ⊆  𝐶 )  ↔  ( 𝐴  +ℋ  𝐵 )  ⊆  𝐶 ) |