Description: Subspaces are subsets of Hilbert space. (Contributed by NM, 24-Nov-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shsspwh | ⊢ Sℋ ⊆ 𝒫 ℋ | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pwuni | ⊢ Sℋ ⊆ 𝒫 ∪ Sℋ | |
| 2 | helsh | ⊢ ℋ ∈ Sℋ | |
| 3 | shss | ⊢ ( 𝑥 ∈ Sℋ → 𝑥 ⊆ ℋ ) | |
| 4 | 3 | rgen | ⊢ ∀ 𝑥 ∈ Sℋ 𝑥 ⊆ ℋ | 
| 5 | ssunieq | ⊢ ( ( ℋ ∈ Sℋ ∧ ∀ 𝑥 ∈ Sℋ 𝑥 ⊆ ℋ ) → ℋ = ∪ Sℋ ) | |
| 6 | 2 4 5 | mp2an | ⊢ ℋ = ∪ Sℋ | 
| 7 | 6 | pweqi | ⊢ 𝒫 ℋ = 𝒫 ∪ Sℋ | 
| 8 | 1 7 | sseqtrri | ⊢ Sℋ ⊆ 𝒫 ℋ |