Description: The subspace sum is a subset of Hilbert space. (Contributed by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shsss | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 +ℋ 𝐵 ) ⊆ ℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shsval | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 +ℋ 𝐵 ) = ( +ℎ “ ( 𝐴 × 𝐵 ) ) ) | |
| 2 | imassrn | ⊢ ( +ℎ “ ( 𝐴 × 𝐵 ) ) ⊆ ran +ℎ | |
| 3 | ax-hfvadd | ⊢ +ℎ : ( ℋ × ℋ ) ⟶ ℋ | |
| 4 | frn | ⊢ ( +ℎ : ( ℋ × ℋ ) ⟶ ℋ → ran +ℎ ⊆ ℋ ) | |
| 5 | 3 4 | ax-mp | ⊢ ran +ℎ ⊆ ℋ |
| 6 | 2 5 | sstri | ⊢ ( +ℎ “ ( 𝐴 × 𝐵 ) ) ⊆ ℋ |
| 7 | 1 6 | eqsstrdi | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 +ℋ 𝐵 ) ⊆ ℋ ) |