Metamath Proof Explorer


Theorem shsss

Description: The subspace sum is a subset of Hilbert space. (Contributed by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion shsss ( ( 𝐴S𝐵S ) → ( 𝐴 + 𝐵 ) ⊆ ℋ )

Proof

Step Hyp Ref Expression
1 shsval ( ( 𝐴S𝐵S ) → ( 𝐴 + 𝐵 ) = ( + “ ( 𝐴 × 𝐵 ) ) )
2 imassrn ( + “ ( 𝐴 × 𝐵 ) ) ⊆ ran +
3 ax-hfvadd + : ( ℋ × ℋ ) ⟶ ℋ
4 frn ( + : ( ℋ × ℋ ) ⟶ ℋ → ran + ⊆ ℋ )
5 3 4 ax-mp ran + ⊆ ℋ
6 2 5 sstri ( + “ ( 𝐴 × 𝐵 ) ) ⊆ ℋ
7 1 6 eqsstrdi ( ( 𝐴S𝐵S ) → ( 𝐴 + 𝐵 ) ⊆ ℋ )