Metamath Proof Explorer
Description: Subspace sum is an upper bound of its arguments. (Contributed by NM, 14-Dec-2004) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Assertion |
shsub1 |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → 𝐴 ⊆ ( 𝐴 +ℋ 𝐵 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
shsel1 |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) |
2 |
1
|
ssrdv |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → 𝐴 ⊆ ( 𝐴 +ℋ 𝐵 ) ) |