Metamath Proof Explorer


Theorem shsub1i

Description: Subspace sum is an upper bound of its arguments. (Contributed by NM, 19-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses shincl.1 𝐴S
shincl.2 𝐵S
Assertion shsub1i 𝐴 ⊆ ( 𝐴 + 𝐵 )

Proof

Step Hyp Ref Expression
1 shincl.1 𝐴S
2 shincl.2 𝐵S
3 1 2 shsel1i ( 𝑥𝐴𝑥 ∈ ( 𝐴 + 𝐵 ) )
4 3 ssriv 𝐴 ⊆ ( 𝐴 + 𝐵 )