Metamath Proof Explorer


Theorem shsub2i

Description: Subspace sum is an upper bound of its arguments. (Contributed by NM, 17-Dec-2004) (New usage is discouraged.)

Ref Expression
Hypotheses shincl.1 𝐴S
shincl.2 𝐵S
Assertion shsub2i 𝐴 ⊆ ( 𝐵 + 𝐴 )

Proof

Step Hyp Ref Expression
1 shincl.1 𝐴S
2 shincl.2 𝐵S
3 2 1 shsel2i ( 𝑥𝐴𝑥 ∈ ( 𝐵 + 𝐴 ) )
4 3 ssriv 𝐴 ⊆ ( 𝐵 + 𝐴 )