Step |
Hyp |
Ref |
Expression |
1 |
|
shss |
⊢ ( 𝐻 ∈ Sℋ → 𝐻 ⊆ ℋ ) |
2 |
1
|
sseld |
⊢ ( 𝐻 ∈ Sℋ → ( 𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ ) ) |
3 |
1
|
sseld |
⊢ ( 𝐻 ∈ Sℋ → ( 𝐵 ∈ 𝐻 → 𝐵 ∈ ℋ ) ) |
4 |
2 3
|
anim12d |
⊢ ( 𝐻 ∈ Sℋ → ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) → ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ) ) |
5 |
4
|
3impib |
⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) → ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ) |
6 |
|
hvsubval |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 −ℎ 𝐵 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) |
7 |
5 6
|
syl |
⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) → ( 𝐴 −ℎ 𝐵 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) |
8 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
9 |
|
shmulcl |
⊢ ( ( 𝐻 ∈ Sℋ ∧ - 1 ∈ ℂ ∧ 𝐵 ∈ 𝐻 ) → ( - 1 ·ℎ 𝐵 ) ∈ 𝐻 ) |
10 |
8 9
|
mp3an2 |
⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐵 ∈ 𝐻 ) → ( - 1 ·ℎ 𝐵 ) ∈ 𝐻 ) |
11 |
10
|
3adant2 |
⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) → ( - 1 ·ℎ 𝐵 ) ∈ 𝐻 ) |
12 |
|
shaddcl |
⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ ( - 1 ·ℎ 𝐵 ) ∈ 𝐻 ) → ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ∈ 𝐻 ) |
13 |
11 12
|
syld3an3 |
⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) → ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ∈ 𝐻 ) |
14 |
7 13
|
eqeltrd |
⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) → ( 𝐴 −ℎ 𝐵 ) ∈ 𝐻 ) |