Metamath Proof Explorer


Theorem shsubcl

Description: Closure of vector subtraction in a subspace of a Hilbert space. (Contributed by NM, 18-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion shsubcl ( ( 𝐻S𝐴𝐻𝐵𝐻 ) → ( 𝐴 𝐵 ) ∈ 𝐻 )

Proof

Step Hyp Ref Expression
1 shss ( 𝐻S𝐻 ⊆ ℋ )
2 1 sseld ( 𝐻S → ( 𝐴𝐻𝐴 ∈ ℋ ) )
3 1 sseld ( 𝐻S → ( 𝐵𝐻𝐵 ∈ ℋ ) )
4 2 3 anim12d ( 𝐻S → ( ( 𝐴𝐻𝐵𝐻 ) → ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ) )
5 4 3impib ( ( 𝐻S𝐴𝐻𝐵𝐻 ) → ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) )
6 hvsubval ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 𝐵 ) = ( 𝐴 + ( - 1 · 𝐵 ) ) )
7 5 6 syl ( ( 𝐻S𝐴𝐻𝐵𝐻 ) → ( 𝐴 𝐵 ) = ( 𝐴 + ( - 1 · 𝐵 ) ) )
8 neg1cn - 1 ∈ ℂ
9 shmulcl ( ( 𝐻S ∧ - 1 ∈ ℂ ∧ 𝐵𝐻 ) → ( - 1 · 𝐵 ) ∈ 𝐻 )
10 8 9 mp3an2 ( ( 𝐻S𝐵𝐻 ) → ( - 1 · 𝐵 ) ∈ 𝐻 )
11 10 3adant2 ( ( 𝐻S𝐴𝐻𝐵𝐻 ) → ( - 1 · 𝐵 ) ∈ 𝐻 )
12 shaddcl ( ( 𝐻S𝐴𝐻 ∧ ( - 1 · 𝐵 ) ∈ 𝐻 ) → ( 𝐴 + ( - 1 · 𝐵 ) ) ∈ 𝐻 )
13 11 12 syld3an3 ( ( 𝐻S𝐴𝐻𝐵𝐻 ) → ( 𝐴 + ( - 1 · 𝐵 ) ) ∈ 𝐻 )
14 7 13 eqeltrd ( ( 𝐻S𝐴𝐻𝐵𝐻 ) → ( 𝐴 𝐵 ) ∈ 𝐻 )