Description: Vector sum belongs to subspace sum. (Contributed by NM, 15-Dec-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | shsva | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( 𝐶 +ℎ 𝐷 ) ∈ ( 𝐴 +ℋ 𝐵 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ ( 𝐶 +ℎ 𝐷 ) = ( 𝐶 +ℎ 𝐷 ) | |
2 | rspceov | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ ( 𝐶 +ℎ 𝐷 ) = ( 𝐶 +ℎ 𝐷 ) ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝐶 +ℎ 𝐷 ) = ( 𝑥 +ℎ 𝑦 ) ) | |
3 | 1 2 | mp3an3 | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝐶 +ℎ 𝐷 ) = ( 𝑥 +ℎ 𝑦 ) ) |
4 | shsel | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( ( 𝐶 +ℎ 𝐷 ) ∈ ( 𝐴 +ℋ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝐶 +ℎ 𝐷 ) = ( 𝑥 +ℎ 𝑦 ) ) ) | |
5 | 3 4 | syl5ibr | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( 𝐶 +ℎ 𝐷 ) ∈ ( 𝐴 +ℋ 𝐵 ) ) ) |