Metamath Proof Explorer


Theorem shsva

Description: Vector sum belongs to subspace sum. (Contributed by NM, 15-Dec-2004) (New usage is discouraged.)

Ref Expression
Assertion shsva ( ( 𝐴S𝐵S ) → ( ( 𝐶𝐴𝐷𝐵 ) → ( 𝐶 + 𝐷 ) ∈ ( 𝐴 + 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 eqid ( 𝐶 + 𝐷 ) = ( 𝐶 + 𝐷 )
2 rspceov ( ( 𝐶𝐴𝐷𝐵 ∧ ( 𝐶 + 𝐷 ) = ( 𝐶 + 𝐷 ) ) → ∃ 𝑥𝐴𝑦𝐵 ( 𝐶 + 𝐷 ) = ( 𝑥 + 𝑦 ) )
3 1 2 mp3an3 ( ( 𝐶𝐴𝐷𝐵 ) → ∃ 𝑥𝐴𝑦𝐵 ( 𝐶 + 𝐷 ) = ( 𝑥 + 𝑦 ) )
4 shsel ( ( 𝐴S𝐵S ) → ( ( 𝐶 + 𝐷 ) ∈ ( 𝐴 + 𝐵 ) ↔ ∃ 𝑥𝐴𝑦𝐵 ( 𝐶 + 𝐷 ) = ( 𝑥 + 𝑦 ) ) )
5 3 4 syl5ibr ( ( 𝐴S𝐵S ) → ( ( 𝐶𝐴𝐷𝐵 ) → ( 𝐶 + 𝐷 ) ∈ ( 𝐴 + 𝐵 ) ) )