Metamath Proof Explorer
		
		
		
		Description:  Vector sum belongs to subspace sum.  (Contributed by NM, 17-Oct-1999)
       (New usage is discouraged.)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | shincl.1 | ⊢ 𝐴  ∈   Sℋ | 
					
						|  |  | shincl.2 | ⊢ 𝐵  ∈   Sℋ | 
				
					|  | Assertion | shsvai | ⊢  ( ( 𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐵 )  →  ( 𝐶  +ℎ  𝐷 )  ∈  ( 𝐴  +ℋ  𝐵 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | shincl.1 | ⊢ 𝐴  ∈   Sℋ | 
						
							| 2 |  | shincl.2 | ⊢ 𝐵  ∈   Sℋ | 
						
							| 3 |  | shsva | ⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  →  ( ( 𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐵 )  →  ( 𝐶  +ℎ  𝐷 )  ∈  ( 𝐴  +ℋ  𝐵 ) ) ) | 
						
							| 4 | 1 2 3 | mp2an | ⊢ ( ( 𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐵 )  →  ( 𝐶  +ℎ  𝐷 )  ∈  ( 𝐴  +ℋ  𝐵 ) ) |