Metamath Proof Explorer
Description: Vector sum belongs to subspace sum. (Contributed by NM, 17-Oct-1999)
(New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
shincl.1 |
⊢ 𝐴 ∈ Sℋ |
|
|
shincl.2 |
⊢ 𝐵 ∈ Sℋ |
|
Assertion |
shsvai |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( 𝐶 +ℎ 𝐷 ) ∈ ( 𝐴 +ℋ 𝐵 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
shincl.1 |
⊢ 𝐴 ∈ Sℋ |
2 |
|
shincl.2 |
⊢ 𝐵 ∈ Sℋ |
3 |
|
shsva |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( 𝐶 +ℎ 𝐷 ) ∈ ( 𝐴 +ℋ 𝐵 ) ) ) |
4 |
1 2 3
|
mp2an |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( 𝐶 +ℎ 𝐷 ) ∈ ( 𝐴 +ℋ 𝐵 ) ) |