Metamath Proof Explorer


Theorem shsvai

Description: Vector sum belongs to subspace sum. (Contributed by NM, 17-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses shincl.1 𝐴S
shincl.2 𝐵S
Assertion shsvai ( ( 𝐶𝐴𝐷𝐵 ) → ( 𝐶 + 𝐷 ) ∈ ( 𝐴 + 𝐵 ) )

Proof

Step Hyp Ref Expression
1 shincl.1 𝐴S
2 shincl.2 𝐵S
3 shsva ( ( 𝐴S𝐵S ) → ( ( 𝐶𝐴𝐷𝐵 ) → ( 𝐶 + 𝐷 ) ∈ ( 𝐴 + 𝐵 ) ) )
4 1 2 3 mp2an ( ( 𝐶𝐴𝐷𝐵 ) → ( 𝐶 + 𝐷 ) ∈ ( 𝐴 + 𝐵 ) )