| Step | Hyp | Ref | Expression | 
						
							| 1 |  | shlesb1.1 | ⊢ 𝐴  ∈   Sℋ | 
						
							| 2 |  | shlesb1.2 | ⊢ 𝐵  ∈   Sℋ | 
						
							| 3 |  | ssun1 | ⊢ 𝐴  ⊆  ( 𝐴  ∪  𝐵 ) | 
						
							| 4 |  | ssintub | ⊢ ( 𝐴  ∪  𝐵 )  ⊆  ∩  { 𝑥  ∈   Sℋ   ∣  ( 𝐴  ∪  𝐵 )  ⊆  𝑥 } | 
						
							| 5 | 3 4 | sstri | ⊢ 𝐴  ⊆  ∩  { 𝑥  ∈   Sℋ   ∣  ( 𝐴  ∪  𝐵 )  ⊆  𝑥 } | 
						
							| 6 |  | ssun2 | ⊢ 𝐵  ⊆  ( 𝐴  ∪  𝐵 ) | 
						
							| 7 | 6 4 | sstri | ⊢ 𝐵  ⊆  ∩  { 𝑥  ∈   Sℋ   ∣  ( 𝐴  ∪  𝐵 )  ⊆  𝑥 } | 
						
							| 8 | 5 7 | pm3.2i | ⊢ ( 𝐴  ⊆  ∩  { 𝑥  ∈   Sℋ   ∣  ( 𝐴  ∪  𝐵 )  ⊆  𝑥 }  ∧  𝐵  ⊆  ∩  { 𝑥  ∈   Sℋ   ∣  ( 𝐴  ∪  𝐵 )  ⊆  𝑥 } ) | 
						
							| 9 |  | ssrab2 | ⊢ { 𝑥  ∈   Sℋ   ∣  ( 𝐴  ∪  𝐵 )  ⊆  𝑥 }  ⊆   Sℋ | 
						
							| 10 | 1 2 | shscli | ⊢ ( 𝐴  +ℋ  𝐵 )  ∈   Sℋ | 
						
							| 11 | 1 2 | shunssi | ⊢ ( 𝐴  ∪  𝐵 )  ⊆  ( 𝐴  +ℋ  𝐵 ) | 
						
							| 12 |  | sseq2 | ⊢ ( 𝑥  =  ( 𝐴  +ℋ  𝐵 )  →  ( ( 𝐴  ∪  𝐵 )  ⊆  𝑥  ↔  ( 𝐴  ∪  𝐵 )  ⊆  ( 𝐴  +ℋ  𝐵 ) ) ) | 
						
							| 13 | 12 | rspcev | ⊢ ( ( ( 𝐴  +ℋ  𝐵 )  ∈   Sℋ   ∧  ( 𝐴  ∪  𝐵 )  ⊆  ( 𝐴  +ℋ  𝐵 ) )  →  ∃ 𝑥  ∈   Sℋ  ( 𝐴  ∪  𝐵 )  ⊆  𝑥 ) | 
						
							| 14 | 10 11 13 | mp2an | ⊢ ∃ 𝑥  ∈   Sℋ  ( 𝐴  ∪  𝐵 )  ⊆  𝑥 | 
						
							| 15 |  | rabn0 | ⊢ ( { 𝑥  ∈   Sℋ   ∣  ( 𝐴  ∪  𝐵 )  ⊆  𝑥 }  ≠  ∅  ↔  ∃ 𝑥  ∈   Sℋ  ( 𝐴  ∪  𝐵 )  ⊆  𝑥 ) | 
						
							| 16 | 14 15 | mpbir | ⊢ { 𝑥  ∈   Sℋ   ∣  ( 𝐴  ∪  𝐵 )  ⊆  𝑥 }  ≠  ∅ | 
						
							| 17 |  | shintcl | ⊢ ( ( { 𝑥  ∈   Sℋ   ∣  ( 𝐴  ∪  𝐵 )  ⊆  𝑥 }  ⊆   Sℋ   ∧  { 𝑥  ∈   Sℋ   ∣  ( 𝐴  ∪  𝐵 )  ⊆  𝑥 }  ≠  ∅ )  →  ∩  { 𝑥  ∈   Sℋ   ∣  ( 𝐴  ∪  𝐵 )  ⊆  𝑥 }  ∈   Sℋ  ) | 
						
							| 18 | 9 16 17 | mp2an | ⊢ ∩  { 𝑥  ∈   Sℋ   ∣  ( 𝐴  ∪  𝐵 )  ⊆  𝑥 }  ∈   Sℋ | 
						
							| 19 | 1 2 18 | shslubi | ⊢ ( ( 𝐴  ⊆  ∩  { 𝑥  ∈   Sℋ   ∣  ( 𝐴  ∪  𝐵 )  ⊆  𝑥 }  ∧  𝐵  ⊆  ∩  { 𝑥  ∈   Sℋ   ∣  ( 𝐴  ∪  𝐵 )  ⊆  𝑥 } )  ↔  ( 𝐴  +ℋ  𝐵 )  ⊆  ∩  { 𝑥  ∈   Sℋ   ∣  ( 𝐴  ∪  𝐵 )  ⊆  𝑥 } ) | 
						
							| 20 | 8 19 | mpbi | ⊢ ( 𝐴  +ℋ  𝐵 )  ⊆  ∩  { 𝑥  ∈   Sℋ   ∣  ( 𝐴  ∪  𝐵 )  ⊆  𝑥 } | 
						
							| 21 | 12 | elrab | ⊢ ( ( 𝐴  +ℋ  𝐵 )  ∈  { 𝑥  ∈   Sℋ   ∣  ( 𝐴  ∪  𝐵 )  ⊆  𝑥 }  ↔  ( ( 𝐴  +ℋ  𝐵 )  ∈   Sℋ   ∧  ( 𝐴  ∪  𝐵 )  ⊆  ( 𝐴  +ℋ  𝐵 ) ) ) | 
						
							| 22 | 10 11 21 | mpbir2an | ⊢ ( 𝐴  +ℋ  𝐵 )  ∈  { 𝑥  ∈   Sℋ   ∣  ( 𝐴  ∪  𝐵 )  ⊆  𝑥 } | 
						
							| 23 |  | intss1 | ⊢ ( ( 𝐴  +ℋ  𝐵 )  ∈  { 𝑥  ∈   Sℋ   ∣  ( 𝐴  ∪  𝐵 )  ⊆  𝑥 }  →  ∩  { 𝑥  ∈   Sℋ   ∣  ( 𝐴  ∪  𝐵 )  ⊆  𝑥 }  ⊆  ( 𝐴  +ℋ  𝐵 ) ) | 
						
							| 24 | 22 23 | ax-mp | ⊢ ∩  { 𝑥  ∈   Sℋ   ∣  ( 𝐴  ∪  𝐵 )  ⊆  𝑥 }  ⊆  ( 𝐴  +ℋ  𝐵 ) | 
						
							| 25 | 20 24 | eqssi | ⊢ ( 𝐴  +ℋ  𝐵 )  =  ∩  { 𝑥  ∈   Sℋ   ∣  ( 𝐴  ∪  𝐵 )  ⊆  𝑥 } |