Description: An alternate way to express subspace sum. (Contributed by NM, 25-Nov-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | shlesb1.1 | ⊢ 𝐴 ∈ Sℋ | |
shlesb1.2 | ⊢ 𝐵 ∈ Sℋ | ||
Assertion | shsval3i | ⊢ ( 𝐴 +ℋ 𝐵 ) = ( span ‘ ( 𝐴 ∪ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shlesb1.1 | ⊢ 𝐴 ∈ Sℋ | |
2 | shlesb1.2 | ⊢ 𝐵 ∈ Sℋ | |
3 | 1 2 | shsval2i | ⊢ ( 𝐴 +ℋ 𝐵 ) = ∩ { 𝑥 ∈ Sℋ ∣ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑥 } |
4 | 1 | shssii | ⊢ 𝐴 ⊆ ℋ |
5 | 2 | shssii | ⊢ 𝐵 ⊆ ℋ |
6 | 4 5 | unssi | ⊢ ( 𝐴 ∪ 𝐵 ) ⊆ ℋ |
7 | spanval | ⊢ ( ( 𝐴 ∪ 𝐵 ) ⊆ ℋ → ( span ‘ ( 𝐴 ∪ 𝐵 ) ) = ∩ { 𝑥 ∈ Sℋ ∣ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑥 } ) | |
8 | 6 7 | ax-mp | ⊢ ( span ‘ ( 𝐴 ∪ 𝐵 ) ) = ∩ { 𝑥 ∈ Sℋ ∣ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑥 } |
9 | 3 8 | eqtr4i | ⊢ ( 𝐴 +ℋ 𝐵 ) = ( span ‘ ( 𝐴 ∪ 𝐵 ) ) |