Description: An alternate way to express subspace sum. (Contributed by NM, 25-Nov-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | shlesb1.1 | ⊢ 𝐴 ∈ Sℋ | |
| shlesb1.2 | ⊢ 𝐵 ∈ Sℋ | ||
| Assertion | shsval3i | ⊢ ( 𝐴 +ℋ 𝐵 ) = ( span ‘ ( 𝐴 ∪ 𝐵 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | shlesb1.1 | ⊢ 𝐴 ∈ Sℋ | |
| 2 | shlesb1.2 | ⊢ 𝐵 ∈ Sℋ | |
| 3 | 1 2 | shsval2i | ⊢ ( 𝐴 +ℋ 𝐵 ) = ∩ { 𝑥 ∈ Sℋ ∣ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑥 } | 
| 4 | 1 | shssii | ⊢ 𝐴 ⊆ ℋ | 
| 5 | 2 | shssii | ⊢ 𝐵 ⊆ ℋ | 
| 6 | 4 5 | unssi | ⊢ ( 𝐴 ∪ 𝐵 ) ⊆ ℋ | 
| 7 | spanval | ⊢ ( ( 𝐴 ∪ 𝐵 ) ⊆ ℋ → ( span ‘ ( 𝐴 ∪ 𝐵 ) ) = ∩ { 𝑥 ∈ Sℋ ∣ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑥 } ) | |
| 8 | 6 7 | ax-mp | ⊢ ( span ‘ ( 𝐴 ∪ 𝐵 ) ) = ∩ { 𝑥 ∈ Sℋ ∣ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑥 } | 
| 9 | 3 8 | eqtr4i | ⊢ ( 𝐴 +ℋ 𝐵 ) = ( span ‘ ( 𝐴 ∪ 𝐵 ) ) |