Metamath Proof Explorer


Theorem shsval3i

Description: An alternate way to express subspace sum. (Contributed by NM, 25-Nov-2004) (New usage is discouraged.)

Ref Expression
Hypotheses shlesb1.1 𝐴S
shlesb1.2 𝐵S
Assertion shsval3i ( 𝐴 + 𝐵 ) = ( span ‘ ( 𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 shlesb1.1 𝐴S
2 shlesb1.2 𝐵S
3 1 2 shsval2i ( 𝐴 + 𝐵 ) = { 𝑥S ∣ ( 𝐴𝐵 ) ⊆ 𝑥 }
4 1 shssii 𝐴 ⊆ ℋ
5 2 shssii 𝐵 ⊆ ℋ
6 4 5 unssi ( 𝐴𝐵 ) ⊆ ℋ
7 spanval ( ( 𝐴𝐵 ) ⊆ ℋ → ( span ‘ ( 𝐴𝐵 ) ) = { 𝑥S ∣ ( 𝐴𝐵 ) ⊆ 𝑥 } )
8 6 7 ax-mp ( span ‘ ( 𝐴𝐵 ) ) = { 𝑥S ∣ ( 𝐴𝐵 ) ⊆ 𝑥 }
9 3 8 eqtr4i ( 𝐴 + 𝐵 ) = ( span ‘ ( 𝐴𝐵 ) )