Metamath Proof Explorer


Theorem shsvs

Description: Vector subtraction belongs to subspace sum. (Contributed by NM, 15-Dec-2004) (New usage is discouraged.)

Ref Expression
Assertion shsvs ( ( 𝐴S𝐵S ) → ( ( 𝐶𝐴𝐷𝐵 ) → ( 𝐶 𝐷 ) ∈ ( 𝐴 + 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 shscl ( ( 𝐴S𝐵S ) → ( 𝐴 + 𝐵 ) ∈ S )
2 1 a1d ( ( 𝐴S𝐵S ) → ( ( 𝐶𝐴𝐷𝐵 ) → ( 𝐴 + 𝐵 ) ∈ S ) )
3 shsel1 ( ( 𝐴S𝐵S ) → ( 𝐶𝐴𝐶 ∈ ( 𝐴 + 𝐵 ) ) )
4 3 adantrd ( ( 𝐴S𝐵S ) → ( ( 𝐶𝐴𝐷𝐵 ) → 𝐶 ∈ ( 𝐴 + 𝐵 ) ) )
5 shsel2 ( ( 𝐴S𝐵S ) → ( 𝐷𝐵𝐷 ∈ ( 𝐴 + 𝐵 ) ) )
6 5 adantld ( ( 𝐴S𝐵S ) → ( ( 𝐶𝐴𝐷𝐵 ) → 𝐷 ∈ ( 𝐴 + 𝐵 ) ) )
7 2 4 6 3jcad ( ( 𝐴S𝐵S ) → ( ( 𝐶𝐴𝐷𝐵 ) → ( ( 𝐴 + 𝐵 ) ∈ S𝐶 ∈ ( 𝐴 + 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 + 𝐵 ) ) ) )
8 shsubcl ( ( ( 𝐴 + 𝐵 ) ∈ S𝐶 ∈ ( 𝐴 + 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 + 𝐵 ) ) → ( 𝐶 𝐷 ) ∈ ( 𝐴 + 𝐵 ) )
9 7 8 syl6 ( ( 𝐴S𝐵S ) → ( ( 𝐶𝐴𝐷𝐵 ) → ( 𝐶 𝐷 ) ∈ ( 𝐴 + 𝐵 ) ) )