| Step | Hyp | Ref | Expression | 
						
							| 1 |  | shscl | ⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  →  ( 𝐴  +ℋ  𝐵 )  ∈   Sℋ  ) | 
						
							| 2 | 1 | a1d | ⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  →  ( ( 𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐵 )  →  ( 𝐴  +ℋ  𝐵 )  ∈   Sℋ  ) ) | 
						
							| 3 |  | shsel1 | ⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  →  ( 𝐶  ∈  𝐴  →  𝐶  ∈  ( 𝐴  +ℋ  𝐵 ) ) ) | 
						
							| 4 | 3 | adantrd | ⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  →  ( ( 𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐵 )  →  𝐶  ∈  ( 𝐴  +ℋ  𝐵 ) ) ) | 
						
							| 5 |  | shsel2 | ⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  →  ( 𝐷  ∈  𝐵  →  𝐷  ∈  ( 𝐴  +ℋ  𝐵 ) ) ) | 
						
							| 6 | 5 | adantld | ⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  →  ( ( 𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐵 )  →  𝐷  ∈  ( 𝐴  +ℋ  𝐵 ) ) ) | 
						
							| 7 | 2 4 6 | 3jcad | ⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  →  ( ( 𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐵 )  →  ( ( 𝐴  +ℋ  𝐵 )  ∈   Sℋ   ∧  𝐶  ∈  ( 𝐴  +ℋ  𝐵 )  ∧  𝐷  ∈  ( 𝐴  +ℋ  𝐵 ) ) ) ) | 
						
							| 8 |  | shsubcl | ⊢ ( ( ( 𝐴  +ℋ  𝐵 )  ∈   Sℋ   ∧  𝐶  ∈  ( 𝐴  +ℋ  𝐵 )  ∧  𝐷  ∈  ( 𝐴  +ℋ  𝐵 ) )  →  ( 𝐶  −ℎ  𝐷 )  ∈  ( 𝐴  +ℋ  𝐵 ) ) | 
						
							| 9 | 7 8 | syl6 | ⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  →  ( ( 𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐵 )  →  ( 𝐶  −ℎ  𝐷 )  ∈  ( 𝐴  +ℋ  𝐵 ) ) ) |