Description: A subspace is a subset of its Hilbert lattice join with another. (Contributed by NM, 22-Jun-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | shub2 | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → 𝐴 ⊆ ( 𝐵 ∨ℋ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shub1 | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) | |
2 | shjcom | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( 𝐵 ∨ℋ 𝐴 ) ) | |
3 | 1 2 | sseqtrd | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → 𝐴 ⊆ ( 𝐵 ∨ℋ 𝐴 ) ) |