Step |
Hyp |
Ref |
Expression |
1 |
|
shuni.1 |
⊢ ( 𝜑 → 𝐻 ∈ Sℋ ) |
2 |
|
shuni.2 |
⊢ ( 𝜑 → 𝐾 ∈ Sℋ ) |
3 |
|
shuni.3 |
⊢ ( 𝜑 → ( 𝐻 ∩ 𝐾 ) = 0ℋ ) |
4 |
|
shuni.4 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐻 ) |
5 |
|
shuni.5 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐾 ) |
6 |
|
shuni.6 |
⊢ ( 𝜑 → 𝐶 ∈ 𝐻 ) |
7 |
|
shuni.7 |
⊢ ( 𝜑 → 𝐷 ∈ 𝐾 ) |
8 |
|
shuni.8 |
⊢ ( 𝜑 → ( 𝐴 +ℎ 𝐵 ) = ( 𝐶 +ℎ 𝐷 ) ) |
9 |
|
shsubcl |
⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐶 ∈ 𝐻 ) → ( 𝐴 −ℎ 𝐶 ) ∈ 𝐻 ) |
10 |
1 4 6 9
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 −ℎ 𝐶 ) ∈ 𝐻 ) |
11 |
|
shel |
⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ) → 𝐴 ∈ ℋ ) |
12 |
1 4 11
|
syl2anc |
⊢ ( 𝜑 → 𝐴 ∈ ℋ ) |
13 |
|
shel |
⊢ ( ( 𝐾 ∈ Sℋ ∧ 𝐵 ∈ 𝐾 ) → 𝐵 ∈ ℋ ) |
14 |
2 5 13
|
syl2anc |
⊢ ( 𝜑 → 𝐵 ∈ ℋ ) |
15 |
|
shel |
⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐶 ∈ 𝐻 ) → 𝐶 ∈ ℋ ) |
16 |
1 6 15
|
syl2anc |
⊢ ( 𝜑 → 𝐶 ∈ ℋ ) |
17 |
|
shel |
⊢ ( ( 𝐾 ∈ Sℋ ∧ 𝐷 ∈ 𝐾 ) → 𝐷 ∈ ℋ ) |
18 |
2 7 17
|
syl2anc |
⊢ ( 𝜑 → 𝐷 ∈ ℋ ) |
19 |
|
hvaddsub4 |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( 𝐴 +ℎ 𝐵 ) = ( 𝐶 +ℎ 𝐷 ) ↔ ( 𝐴 −ℎ 𝐶 ) = ( 𝐷 −ℎ 𝐵 ) ) ) |
20 |
12 14 16 18 19
|
syl22anc |
⊢ ( 𝜑 → ( ( 𝐴 +ℎ 𝐵 ) = ( 𝐶 +ℎ 𝐷 ) ↔ ( 𝐴 −ℎ 𝐶 ) = ( 𝐷 −ℎ 𝐵 ) ) ) |
21 |
8 20
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 −ℎ 𝐶 ) = ( 𝐷 −ℎ 𝐵 ) ) |
22 |
|
shsubcl |
⊢ ( ( 𝐾 ∈ Sℋ ∧ 𝐷 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) → ( 𝐷 −ℎ 𝐵 ) ∈ 𝐾 ) |
23 |
2 7 5 22
|
syl3anc |
⊢ ( 𝜑 → ( 𝐷 −ℎ 𝐵 ) ∈ 𝐾 ) |
24 |
21 23
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐴 −ℎ 𝐶 ) ∈ 𝐾 ) |
25 |
10 24
|
elind |
⊢ ( 𝜑 → ( 𝐴 −ℎ 𝐶 ) ∈ ( 𝐻 ∩ 𝐾 ) ) |
26 |
25 3
|
eleqtrd |
⊢ ( 𝜑 → ( 𝐴 −ℎ 𝐶 ) ∈ 0ℋ ) |
27 |
|
elch0 |
⊢ ( ( 𝐴 −ℎ 𝐶 ) ∈ 0ℋ ↔ ( 𝐴 −ℎ 𝐶 ) = 0ℎ ) |
28 |
26 27
|
sylib |
⊢ ( 𝜑 → ( 𝐴 −ℎ 𝐶 ) = 0ℎ ) |
29 |
|
hvsubeq0 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐶 ) = 0ℎ ↔ 𝐴 = 𝐶 ) ) |
30 |
12 16 29
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 −ℎ 𝐶 ) = 0ℎ ↔ 𝐴 = 𝐶 ) ) |
31 |
28 30
|
mpbid |
⊢ ( 𝜑 → 𝐴 = 𝐶 ) |
32 |
21 28
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐷 −ℎ 𝐵 ) = 0ℎ ) |
33 |
|
hvsubeq0 |
⊢ ( ( 𝐷 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐷 −ℎ 𝐵 ) = 0ℎ ↔ 𝐷 = 𝐵 ) ) |
34 |
18 14 33
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐷 −ℎ 𝐵 ) = 0ℎ ↔ 𝐷 = 𝐵 ) ) |
35 |
32 34
|
mpbid |
⊢ ( 𝜑 → 𝐷 = 𝐵 ) |
36 |
35
|
eqcomd |
⊢ ( 𝜑 → 𝐵 = 𝐷 ) |
37 |
31 36
|
jca |
⊢ ( 𝜑 → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |