| Step |
Hyp |
Ref |
Expression |
| 1 |
|
shuni.1 |
⊢ ( 𝜑 → 𝐻 ∈ Sℋ ) |
| 2 |
|
shuni.2 |
⊢ ( 𝜑 → 𝐾 ∈ Sℋ ) |
| 3 |
|
shuni.3 |
⊢ ( 𝜑 → ( 𝐻 ∩ 𝐾 ) = 0ℋ ) |
| 4 |
|
shuni.4 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐻 ) |
| 5 |
|
shuni.5 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐾 ) |
| 6 |
|
shuni.6 |
⊢ ( 𝜑 → 𝐶 ∈ 𝐻 ) |
| 7 |
|
shuni.7 |
⊢ ( 𝜑 → 𝐷 ∈ 𝐾 ) |
| 8 |
|
shuni.8 |
⊢ ( 𝜑 → ( 𝐴 +ℎ 𝐵 ) = ( 𝐶 +ℎ 𝐷 ) ) |
| 9 |
|
shsubcl |
⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐶 ∈ 𝐻 ) → ( 𝐴 −ℎ 𝐶 ) ∈ 𝐻 ) |
| 10 |
1 4 6 9
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 −ℎ 𝐶 ) ∈ 𝐻 ) |
| 11 |
|
shel |
⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ) → 𝐴 ∈ ℋ ) |
| 12 |
1 4 11
|
syl2anc |
⊢ ( 𝜑 → 𝐴 ∈ ℋ ) |
| 13 |
|
shel |
⊢ ( ( 𝐾 ∈ Sℋ ∧ 𝐵 ∈ 𝐾 ) → 𝐵 ∈ ℋ ) |
| 14 |
2 5 13
|
syl2anc |
⊢ ( 𝜑 → 𝐵 ∈ ℋ ) |
| 15 |
|
shel |
⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐶 ∈ 𝐻 ) → 𝐶 ∈ ℋ ) |
| 16 |
1 6 15
|
syl2anc |
⊢ ( 𝜑 → 𝐶 ∈ ℋ ) |
| 17 |
|
shel |
⊢ ( ( 𝐾 ∈ Sℋ ∧ 𝐷 ∈ 𝐾 ) → 𝐷 ∈ ℋ ) |
| 18 |
2 7 17
|
syl2anc |
⊢ ( 𝜑 → 𝐷 ∈ ℋ ) |
| 19 |
|
hvaddsub4 |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( 𝐴 +ℎ 𝐵 ) = ( 𝐶 +ℎ 𝐷 ) ↔ ( 𝐴 −ℎ 𝐶 ) = ( 𝐷 −ℎ 𝐵 ) ) ) |
| 20 |
12 14 16 18 19
|
syl22anc |
⊢ ( 𝜑 → ( ( 𝐴 +ℎ 𝐵 ) = ( 𝐶 +ℎ 𝐷 ) ↔ ( 𝐴 −ℎ 𝐶 ) = ( 𝐷 −ℎ 𝐵 ) ) ) |
| 21 |
8 20
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 −ℎ 𝐶 ) = ( 𝐷 −ℎ 𝐵 ) ) |
| 22 |
|
shsubcl |
⊢ ( ( 𝐾 ∈ Sℋ ∧ 𝐷 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) → ( 𝐷 −ℎ 𝐵 ) ∈ 𝐾 ) |
| 23 |
2 7 5 22
|
syl3anc |
⊢ ( 𝜑 → ( 𝐷 −ℎ 𝐵 ) ∈ 𝐾 ) |
| 24 |
21 23
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐴 −ℎ 𝐶 ) ∈ 𝐾 ) |
| 25 |
10 24
|
elind |
⊢ ( 𝜑 → ( 𝐴 −ℎ 𝐶 ) ∈ ( 𝐻 ∩ 𝐾 ) ) |
| 26 |
25 3
|
eleqtrd |
⊢ ( 𝜑 → ( 𝐴 −ℎ 𝐶 ) ∈ 0ℋ ) |
| 27 |
|
elch0 |
⊢ ( ( 𝐴 −ℎ 𝐶 ) ∈ 0ℋ ↔ ( 𝐴 −ℎ 𝐶 ) = 0ℎ ) |
| 28 |
26 27
|
sylib |
⊢ ( 𝜑 → ( 𝐴 −ℎ 𝐶 ) = 0ℎ ) |
| 29 |
|
hvsubeq0 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐶 ) = 0ℎ ↔ 𝐴 = 𝐶 ) ) |
| 30 |
12 16 29
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 −ℎ 𝐶 ) = 0ℎ ↔ 𝐴 = 𝐶 ) ) |
| 31 |
28 30
|
mpbid |
⊢ ( 𝜑 → 𝐴 = 𝐶 ) |
| 32 |
21 28
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐷 −ℎ 𝐵 ) = 0ℎ ) |
| 33 |
|
hvsubeq0 |
⊢ ( ( 𝐷 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐷 −ℎ 𝐵 ) = 0ℎ ↔ 𝐷 = 𝐵 ) ) |
| 34 |
18 14 33
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐷 −ℎ 𝐵 ) = 0ℎ ↔ 𝐷 = 𝐵 ) ) |
| 35 |
32 34
|
mpbid |
⊢ ( 𝜑 → 𝐷 = 𝐵 ) |
| 36 |
35
|
eqcomd |
⊢ ( 𝜑 → 𝐵 = 𝐷 ) |
| 37 |
31 36
|
jca |
⊢ ( 𝜑 → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |