Step |
Hyp |
Ref |
Expression |
1 |
|
shincl.1 |
⊢ 𝐴 ∈ Sℋ |
2 |
|
shincl.2 |
⊢ 𝐵 ∈ Sℋ |
3 |
1
|
sheli |
⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ℋ ) |
4 |
|
ax-hvaddid |
⊢ ( 𝑥 ∈ ℋ → ( 𝑥 +ℎ 0ℎ ) = 𝑥 ) |
5 |
4
|
eqcomd |
⊢ ( 𝑥 ∈ ℋ → 𝑥 = ( 𝑥 +ℎ 0ℎ ) ) |
6 |
3 5
|
syl |
⊢ ( 𝑥 ∈ 𝐴 → 𝑥 = ( 𝑥 +ℎ 0ℎ ) ) |
7 |
|
sh0 |
⊢ ( 𝐵 ∈ Sℋ → 0ℎ ∈ 𝐵 ) |
8 |
2 7
|
ax-mp |
⊢ 0ℎ ∈ 𝐵 |
9 |
|
rspceov |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 0ℎ ∈ 𝐵 ∧ 𝑥 = ( 𝑥 +ℎ 0ℎ ) ) → ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) |
10 |
8 9
|
mp3an2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 = ( 𝑥 +ℎ 0ℎ ) ) → ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) |
11 |
6 10
|
mpdan |
⊢ ( 𝑥 ∈ 𝐴 → ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) |
12 |
2
|
sheli |
⊢ ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ℋ ) |
13 |
|
hvaddid2 |
⊢ ( 𝑥 ∈ ℋ → ( 0ℎ +ℎ 𝑥 ) = 𝑥 ) |
14 |
13
|
eqcomd |
⊢ ( 𝑥 ∈ ℋ → 𝑥 = ( 0ℎ +ℎ 𝑥 ) ) |
15 |
12 14
|
syl |
⊢ ( 𝑥 ∈ 𝐵 → 𝑥 = ( 0ℎ +ℎ 𝑥 ) ) |
16 |
|
sh0 |
⊢ ( 𝐴 ∈ Sℋ → 0ℎ ∈ 𝐴 ) |
17 |
1 16
|
ax-mp |
⊢ 0ℎ ∈ 𝐴 |
18 |
|
rspceov |
⊢ ( ( 0ℎ ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ∧ 𝑥 = ( 0ℎ +ℎ 𝑥 ) ) → ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) |
19 |
17 18
|
mp3an1 |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 = ( 0ℎ +ℎ 𝑥 ) ) → ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) |
20 |
15 19
|
mpdan |
⊢ ( 𝑥 ∈ 𝐵 → ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) |
21 |
11 20
|
jaoi |
⊢ ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) |
22 |
|
elun |
⊢ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ) |
23 |
1 2
|
shseli |
⊢ ( 𝑥 ∈ ( 𝐴 +ℋ 𝐵 ) ↔ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) |
24 |
21 22 23
|
3imtr4i |
⊢ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) → 𝑥 ∈ ( 𝐴 +ℋ 𝐵 ) ) |
25 |
24
|
ssriv |
⊢ ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) |