| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							shincl.1 | 
							⊢ 𝐴  ∈   Sℋ   | 
						
						
							| 2 | 
							
								
							 | 
							shincl.2 | 
							⊢ 𝐵  ∈   Sℋ   | 
						
						
							| 3 | 
							
								1
							 | 
							sheli | 
							⊢ ( 𝑥  ∈  𝐴  →  𝑥  ∈   ℋ )  | 
						
						
							| 4 | 
							
								
							 | 
							ax-hvaddid | 
							⊢ ( 𝑥  ∈   ℋ  →  ( 𝑥  +ℎ  0ℎ )  =  𝑥 )  | 
						
						
							| 5 | 
							
								4
							 | 
							eqcomd | 
							⊢ ( 𝑥  ∈   ℋ  →  𝑥  =  ( 𝑥  +ℎ  0ℎ ) )  | 
						
						
							| 6 | 
							
								3 5
							 | 
							syl | 
							⊢ ( 𝑥  ∈  𝐴  →  𝑥  =  ( 𝑥  +ℎ  0ℎ ) )  | 
						
						
							| 7 | 
							
								
							 | 
							sh0 | 
							⊢ ( 𝐵  ∈   Sℋ   →  0ℎ  ∈  𝐵 )  | 
						
						
							| 8 | 
							
								2 7
							 | 
							ax-mp | 
							⊢ 0ℎ  ∈  𝐵  | 
						
						
							| 9 | 
							
								
							 | 
							rspceov | 
							⊢ ( ( 𝑥  ∈  𝐴  ∧  0ℎ  ∈  𝐵  ∧  𝑥  =  ( 𝑥  +ℎ  0ℎ ) )  →  ∃ 𝑦  ∈  𝐴 ∃ 𝑧  ∈  𝐵 𝑥  =  ( 𝑦  +ℎ  𝑧 ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							mp3an2 | 
							⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑥  =  ( 𝑥  +ℎ  0ℎ ) )  →  ∃ 𝑦  ∈  𝐴 ∃ 𝑧  ∈  𝐵 𝑥  =  ( 𝑦  +ℎ  𝑧 ) )  | 
						
						
							| 11 | 
							
								6 10
							 | 
							mpdan | 
							⊢ ( 𝑥  ∈  𝐴  →  ∃ 𝑦  ∈  𝐴 ∃ 𝑧  ∈  𝐵 𝑥  =  ( 𝑦  +ℎ  𝑧 ) )  | 
						
						
							| 12 | 
							
								2
							 | 
							sheli | 
							⊢ ( 𝑥  ∈  𝐵  →  𝑥  ∈   ℋ )  | 
						
						
							| 13 | 
							
								
							 | 
							hvaddlid | 
							⊢ ( 𝑥  ∈   ℋ  →  ( 0ℎ  +ℎ  𝑥 )  =  𝑥 )  | 
						
						
							| 14 | 
							
								13
							 | 
							eqcomd | 
							⊢ ( 𝑥  ∈   ℋ  →  𝑥  =  ( 0ℎ  +ℎ  𝑥 ) )  | 
						
						
							| 15 | 
							
								12 14
							 | 
							syl | 
							⊢ ( 𝑥  ∈  𝐵  →  𝑥  =  ( 0ℎ  +ℎ  𝑥 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							sh0 | 
							⊢ ( 𝐴  ∈   Sℋ   →  0ℎ  ∈  𝐴 )  | 
						
						
							| 17 | 
							
								1 16
							 | 
							ax-mp | 
							⊢ 0ℎ  ∈  𝐴  | 
						
						
							| 18 | 
							
								
							 | 
							rspceov | 
							⊢ ( ( 0ℎ  ∈  𝐴  ∧  𝑥  ∈  𝐵  ∧  𝑥  =  ( 0ℎ  +ℎ  𝑥 ) )  →  ∃ 𝑦  ∈  𝐴 ∃ 𝑧  ∈  𝐵 𝑥  =  ( 𝑦  +ℎ  𝑧 ) )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							mp3an1 | 
							⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑥  =  ( 0ℎ  +ℎ  𝑥 ) )  →  ∃ 𝑦  ∈  𝐴 ∃ 𝑧  ∈  𝐵 𝑥  =  ( 𝑦  +ℎ  𝑧 ) )  | 
						
						
							| 20 | 
							
								15 19
							 | 
							mpdan | 
							⊢ ( 𝑥  ∈  𝐵  →  ∃ 𝑦  ∈  𝐴 ∃ 𝑧  ∈  𝐵 𝑥  =  ( 𝑦  +ℎ  𝑧 ) )  | 
						
						
							| 21 | 
							
								11 20
							 | 
							jaoi | 
							⊢ ( ( 𝑥  ∈  𝐴  ∨  𝑥  ∈  𝐵 )  →  ∃ 𝑦  ∈  𝐴 ∃ 𝑧  ∈  𝐵 𝑥  =  ( 𝑦  +ℎ  𝑧 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							elun | 
							⊢ ( 𝑥  ∈  ( 𝐴  ∪  𝐵 )  ↔  ( 𝑥  ∈  𝐴  ∨  𝑥  ∈  𝐵 ) )  | 
						
						
							| 23 | 
							
								1 2
							 | 
							shseli | 
							⊢ ( 𝑥  ∈  ( 𝐴  +ℋ  𝐵 )  ↔  ∃ 𝑦  ∈  𝐴 ∃ 𝑧  ∈  𝐵 𝑥  =  ( 𝑦  +ℎ  𝑧 ) )  | 
						
						
							| 24 | 
							
								21 22 23
							 | 
							3imtr4i | 
							⊢ ( 𝑥  ∈  ( 𝐴  ∪  𝐵 )  →  𝑥  ∈  ( 𝐴  +ℋ  𝐵 ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							ssriv | 
							⊢ ( 𝐴  ∪  𝐵 )  ⊆  ( 𝐴  +ℋ  𝐵 )  |