Metamath Proof Explorer


Theorem shunssji

Description: Union is smaller than Hilbert lattice join. (Contributed by NM, 11-Jun-2004) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses shincl.1 𝐴S
shincl.2 𝐵S
Assertion shunssji ( 𝐴𝐵 ) ⊆ ( 𝐴 𝐵 )

Proof

Step Hyp Ref Expression
1 shincl.1 𝐴S
2 shincl.2 𝐵S
3 1 shssii 𝐴 ⊆ ℋ
4 2 shssii 𝐵 ⊆ ℋ
5 3 4 unssi ( 𝐴𝐵 ) ⊆ ℋ
6 ococss ( ( 𝐴𝐵 ) ⊆ ℋ → ( 𝐴𝐵 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) )
7 5 6 ax-mp ( 𝐴𝐵 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴𝐵 ) ) )
8 shjval ( ( 𝐴S𝐵S ) → ( 𝐴 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) )
9 1 2 8 mp2an ( 𝐴 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴𝐵 ) ) )
10 7 9 sseqtrri ( 𝐴𝐵 ) ⊆ ( 𝐴 𝐵 )