Description: Union is smaller than Hilbert lattice join. (Contributed by NM, 11-Jun-2004) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | shincl.1 | ⊢ 𝐴 ∈ Sℋ | |
shincl.2 | ⊢ 𝐵 ∈ Sℋ | ||
Assertion | shunssji | ⊢ ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shincl.1 | ⊢ 𝐴 ∈ Sℋ | |
2 | shincl.2 | ⊢ 𝐵 ∈ Sℋ | |
3 | 1 | shssii | ⊢ 𝐴 ⊆ ℋ |
4 | 2 | shssii | ⊢ 𝐵 ⊆ ℋ |
5 | 3 4 | unssi | ⊢ ( 𝐴 ∪ 𝐵 ) ⊆ ℋ |
6 | ococss | ⊢ ( ( 𝐴 ∪ 𝐵 ) ⊆ ℋ → ( 𝐴 ∪ 𝐵 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) | |
7 | 5 6 | ax-mp | ⊢ ( 𝐴 ∪ 𝐵 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
8 | shjval | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) | |
9 | 1 2 8 | mp2an | ⊢ ( 𝐴 ∨ℋ 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
10 | 7 9 | sseqtrri | ⊢ ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) |