Step |
Hyp |
Ref |
Expression |
1 |
|
sigar |
⊢ 𝐺 = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( ℑ ‘ ( ( ∗ ‘ 𝑥 ) · 𝑦 ) ) ) |
2 |
1
|
sigarval |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 𝐺 𝐵 ) = ( ℑ ‘ ( ( ∗ ‘ 𝐴 ) · 𝐵 ) ) ) |
3 |
|
cjcl |
⊢ ( 𝐵 ∈ ℂ → ( ∗ ‘ 𝐵 ) ∈ ℂ ) |
4 |
3
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∗ ‘ 𝐵 ) ∈ ℂ ) |
5 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
6 |
4 5
|
cjmuld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∗ ‘ ( ( ∗ ‘ 𝐵 ) · 𝐴 ) ) = ( ( ∗ ‘ ( ∗ ‘ 𝐵 ) ) · ( ∗ ‘ 𝐴 ) ) ) |
7 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ℂ ) |
8 |
7
|
cjcjd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∗ ‘ ( ∗ ‘ 𝐵 ) ) = 𝐵 ) |
9 |
8
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ∗ ‘ ( ∗ ‘ 𝐵 ) ) · ( ∗ ‘ 𝐴 ) ) = ( 𝐵 · ( ∗ ‘ 𝐴 ) ) ) |
10 |
5
|
cjcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
11 |
7 10
|
mulcomd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 · ( ∗ ‘ 𝐴 ) ) = ( ( ∗ ‘ 𝐴 ) · 𝐵 ) ) |
12 |
6 9 11
|
3eqtrrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ∗ ‘ 𝐴 ) · 𝐵 ) = ( ∗ ‘ ( ( ∗ ‘ 𝐵 ) · 𝐴 ) ) ) |
13 |
12
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ ( ( ∗ ‘ 𝐴 ) · 𝐵 ) ) = ( ℑ ‘ ( ∗ ‘ ( ( ∗ ‘ 𝐵 ) · 𝐴 ) ) ) ) |
14 |
4 5
|
mulcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ∗ ‘ 𝐵 ) · 𝐴 ) ∈ ℂ ) |
15 |
14
|
imcjd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ ( ∗ ‘ ( ( ∗ ‘ 𝐵 ) · 𝐴 ) ) ) = - ( ℑ ‘ ( ( ∗ ‘ 𝐵 ) · 𝐴 ) ) ) |
16 |
2 13 15
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 𝐺 𝐵 ) = - ( ℑ ‘ ( ( ∗ ‘ 𝐵 ) · 𝐴 ) ) ) |
17 |
1
|
sigarval |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 𝐵 𝐺 𝐴 ) = ( ℑ ‘ ( ( ∗ ‘ 𝐵 ) · 𝐴 ) ) ) |
18 |
17
|
ancoms |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 𝐺 𝐴 ) = ( ℑ ‘ ( ( ∗ ‘ 𝐵 ) · 𝐴 ) ) ) |
19 |
18
|
negeqd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → - ( 𝐵 𝐺 𝐴 ) = - ( ℑ ‘ ( ( ∗ ‘ 𝐵 ) · 𝐴 ) ) ) |
20 |
16 19
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 𝐺 𝐵 ) = - ( 𝐵 𝐺 𝐴 ) ) |