| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sigar | ⊢ 𝐺  =  ( 𝑥  ∈  ℂ ,  𝑦  ∈  ℂ  ↦  ( ℑ ‘ ( ( ∗ ‘ 𝑥 )  ·  𝑦 ) ) ) | 
						
							| 2 |  | simp1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  𝐴  ∈  ℂ ) | 
						
							| 3 |  | simp2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  𝐵  ∈  ℂ ) | 
						
							| 4 |  | simp3 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  𝐶  ∈  ℂ ) | 
						
							| 5 | 3 4 | addcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐵  +  𝐶 )  ∈  ℂ ) | 
						
							| 6 | 1 | sigarac | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( 𝐵  +  𝐶 )  ∈  ℂ )  →  ( 𝐴 𝐺 ( 𝐵  +  𝐶 ) )  =  - ( ( 𝐵  +  𝐶 ) 𝐺 𝐴 ) ) | 
						
							| 7 | 2 5 6 | syl2anc | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐴 𝐺 ( 𝐵  +  𝐶 ) )  =  - ( ( 𝐵  +  𝐶 ) 𝐺 𝐴 ) ) | 
						
							| 8 | 1 | sigaraf | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐴  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ( 𝐵  +  𝐶 ) 𝐺 𝐴 )  =  ( ( 𝐵 𝐺 𝐴 )  +  ( 𝐶 𝐺 𝐴 ) ) ) | 
						
							| 9 | 8 | negeqd | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐴  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  - ( ( 𝐵  +  𝐶 ) 𝐺 𝐴 )  =  - ( ( 𝐵 𝐺 𝐴 )  +  ( 𝐶 𝐺 𝐴 ) ) ) | 
						
							| 10 | 9 | 3com12 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  - ( ( 𝐵  +  𝐶 ) 𝐺 𝐴 )  =  - ( ( 𝐵 𝐺 𝐴 )  +  ( 𝐶 𝐺 𝐴 ) ) ) | 
						
							| 11 |  | 3simpa | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ ) ) | 
						
							| 12 | 11 | ancomd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐵  ∈  ℂ  ∧  𝐴  ∈  ℂ ) ) | 
						
							| 13 | 1 | sigarim | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( 𝐵 𝐺 𝐴 )  ∈  ℝ ) | 
						
							| 14 | 12 13 | syl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐵 𝐺 𝐴 )  ∈  ℝ ) | 
						
							| 15 | 14 | recnd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐵 𝐺 𝐴 )  ∈  ℂ ) | 
						
							| 16 |  | 3simpb | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐴  ∈  ℂ  ∧  𝐶  ∈  ℂ ) ) | 
						
							| 17 | 16 | ancomd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐶  ∈  ℂ  ∧  𝐴  ∈  ℂ ) ) | 
						
							| 18 | 1 | sigarim | ⊢ ( ( 𝐶  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( 𝐶 𝐺 𝐴 )  ∈  ℝ ) | 
						
							| 19 | 17 18 | syl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐶 𝐺 𝐴 )  ∈  ℝ ) | 
						
							| 20 | 19 | recnd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐶 𝐺 𝐴 )  ∈  ℂ ) | 
						
							| 21 | 15 20 | negdid | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  - ( ( 𝐵 𝐺 𝐴 )  +  ( 𝐶 𝐺 𝐴 ) )  =  ( - ( 𝐵 𝐺 𝐴 )  +  - ( 𝐶 𝐺 𝐴 ) ) ) | 
						
							| 22 | 10 21 | eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  - ( ( 𝐵  +  𝐶 ) 𝐺 𝐴 )  =  ( - ( 𝐵 𝐺 𝐴 )  +  - ( 𝐶 𝐺 𝐴 ) ) ) | 
						
							| 23 | 1 | sigarac | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐴 𝐺 𝐵 )  =  - ( 𝐵 𝐺 𝐴 ) ) | 
						
							| 24 | 2 3 23 | syl2anc | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐴 𝐺 𝐵 )  =  - ( 𝐵 𝐺 𝐴 ) ) | 
						
							| 25 | 24 | eqcomd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  - ( 𝐵 𝐺 𝐴 )  =  ( 𝐴 𝐺 𝐵 ) ) | 
						
							| 26 | 1 | sigarac | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐴 𝐺 𝐶 )  =  - ( 𝐶 𝐺 𝐴 ) ) | 
						
							| 27 | 2 4 26 | syl2anc | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐴 𝐺 𝐶 )  =  - ( 𝐶 𝐺 𝐴 ) ) | 
						
							| 28 | 27 | eqcomd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  - ( 𝐶 𝐺 𝐴 )  =  ( 𝐴 𝐺 𝐶 ) ) | 
						
							| 29 | 25 28 | oveq12d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( - ( 𝐵 𝐺 𝐴 )  +  - ( 𝐶 𝐺 𝐴 ) )  =  ( ( 𝐴 𝐺 𝐵 )  +  ( 𝐴 𝐺 𝐶 ) ) ) | 
						
							| 30 | 7 22 29 | 3eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐴 𝐺 ( 𝐵  +  𝐶 ) )  =  ( ( 𝐴 𝐺 𝐵 )  +  ( 𝐴 𝐺 𝐶 ) ) ) |