Step |
Hyp |
Ref |
Expression |
1 |
|
sigar |
⊢ 𝐺 = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( ℑ ‘ ( ( ∗ ‘ 𝑥 ) · 𝑦 ) ) ) |
2 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
3 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐵 ∈ ℂ ) |
4 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐶 ∈ ℂ ) |
5 |
3 4
|
addcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 + 𝐶 ) ∈ ℂ ) |
6 |
1
|
sigarac |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 + 𝐶 ) ∈ ℂ ) → ( 𝐴 𝐺 ( 𝐵 + 𝐶 ) ) = - ( ( 𝐵 + 𝐶 ) 𝐺 𝐴 ) ) |
7 |
2 5 6
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 𝐺 ( 𝐵 + 𝐶 ) ) = - ( ( 𝐵 + 𝐶 ) 𝐺 𝐴 ) ) |
8 |
1
|
sigaraf |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 + 𝐶 ) 𝐺 𝐴 ) = ( ( 𝐵 𝐺 𝐴 ) + ( 𝐶 𝐺 𝐴 ) ) ) |
9 |
8
|
negeqd |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → - ( ( 𝐵 + 𝐶 ) 𝐺 𝐴 ) = - ( ( 𝐵 𝐺 𝐴 ) + ( 𝐶 𝐺 𝐴 ) ) ) |
10 |
9
|
3com12 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → - ( ( 𝐵 + 𝐶 ) 𝐺 𝐴 ) = - ( ( 𝐵 𝐺 𝐴 ) + ( 𝐶 𝐺 𝐴 ) ) ) |
11 |
|
3simpa |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ) |
12 |
11
|
ancomd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) ) |
13 |
1
|
sigarim |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 𝐵 𝐺 𝐴 ) ∈ ℝ ) |
14 |
12 13
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 𝐺 𝐴 ) ∈ ℝ ) |
15 |
14
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 𝐺 𝐴 ) ∈ ℂ ) |
16 |
|
3simpb |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ) |
17 |
16
|
ancomd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ) ) |
18 |
1
|
sigarim |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 𝐶 𝐺 𝐴 ) ∈ ℝ ) |
19 |
17 18
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐶 𝐺 𝐴 ) ∈ ℝ ) |
20 |
19
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐶 𝐺 𝐴 ) ∈ ℂ ) |
21 |
15 20
|
negdid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → - ( ( 𝐵 𝐺 𝐴 ) + ( 𝐶 𝐺 𝐴 ) ) = ( - ( 𝐵 𝐺 𝐴 ) + - ( 𝐶 𝐺 𝐴 ) ) ) |
22 |
10 21
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → - ( ( 𝐵 + 𝐶 ) 𝐺 𝐴 ) = ( - ( 𝐵 𝐺 𝐴 ) + - ( 𝐶 𝐺 𝐴 ) ) ) |
23 |
1
|
sigarac |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 𝐺 𝐵 ) = - ( 𝐵 𝐺 𝐴 ) ) |
24 |
2 3 23
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 𝐺 𝐵 ) = - ( 𝐵 𝐺 𝐴 ) ) |
25 |
24
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → - ( 𝐵 𝐺 𝐴 ) = ( 𝐴 𝐺 𝐵 ) ) |
26 |
1
|
sigarac |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 𝐺 𝐶 ) = - ( 𝐶 𝐺 𝐴 ) ) |
27 |
2 4 26
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 𝐺 𝐶 ) = - ( 𝐶 𝐺 𝐴 ) ) |
28 |
27
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → - ( 𝐶 𝐺 𝐴 ) = ( 𝐴 𝐺 𝐶 ) ) |
29 |
25 28
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( - ( 𝐵 𝐺 𝐴 ) + - ( 𝐶 𝐺 𝐴 ) ) = ( ( 𝐴 𝐺 𝐵 ) + ( 𝐴 𝐺 𝐶 ) ) ) |
30 |
7 22 29
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 𝐺 ( 𝐵 + 𝐶 ) ) = ( ( 𝐴 𝐺 𝐵 ) + ( 𝐴 𝐺 𝐶 ) ) ) |