| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sigar | ⊢ 𝐺  =  ( 𝑥  ∈  ℂ ,  𝑦  ∈  ℂ  ↦  ( ℑ ‘ ( ( ∗ ‘ 𝑥 )  ·  𝑦 ) ) ) | 
						
							| 2 | 1 | sigarval | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( 𝐴 𝐺 𝐴 )  =  ( ℑ ‘ ( ( ∗ ‘ 𝐴 )  ·  𝐴 ) ) ) | 
						
							| 3 | 2 | anidms | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴 𝐺 𝐴 )  =  ( ℑ ‘ ( ( ∗ ‘ 𝐴 )  ·  𝐴 ) ) ) | 
						
							| 4 |  | cjcl | ⊢ ( 𝐴  ∈  ℂ  →  ( ∗ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 5 |  | id | ⊢ ( 𝐴  ∈  ℂ  →  𝐴  ∈  ℂ ) | 
						
							| 6 | 4 5 | mulcomd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ∗ ‘ 𝐴 )  ·  𝐴 )  =  ( 𝐴  ·  ( ∗ ‘ 𝐴 ) ) ) | 
						
							| 7 |  | cjmulrcl | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴  ·  ( ∗ ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 8 | 6 7 | eqeltrd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ∗ ‘ 𝐴 )  ·  𝐴 )  ∈  ℝ ) | 
						
							| 9 | 8 | reim0d | ⊢ ( 𝐴  ∈  ℂ  →  ( ℑ ‘ ( ( ∗ ‘ 𝐴 )  ·  𝐴 ) )  =  0 ) | 
						
							| 10 | 3 9 | eqtrd | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴 𝐺 𝐴 )  =  0 ) |