| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sigar | ⊢ 𝐺  =  ( 𝑥  ∈  ℂ ,  𝑦  ∈  ℂ  ↦  ( ℑ ‘ ( ( ∗ ‘ 𝑥 )  ·  𝑦 ) ) ) | 
						
							| 2 |  | simp1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℝ )  →  𝐴  ∈  ℂ ) | 
						
							| 3 | 2 | cjcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℝ )  →  ( ∗ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 4 |  | simp2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℝ )  →  𝐵  ∈  ℂ ) | 
						
							| 5 |  | simpr | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐶  ∈  ℝ )  →  𝐶  ∈  ℝ ) | 
						
							| 6 | 5 | recnd | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐶  ∈  ℝ )  →  𝐶  ∈  ℂ ) | 
						
							| 7 | 6 | 3adant1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℝ )  →  𝐶  ∈  ℂ ) | 
						
							| 8 | 3 4 7 | mulassd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℝ )  →  ( ( ( ∗ ‘ 𝐴 )  ·  𝐵 )  ·  𝐶 )  =  ( ( ∗ ‘ 𝐴 )  ·  ( 𝐵  ·  𝐶 ) ) ) | 
						
							| 9 | 8 | fveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℝ )  →  ( ℑ ‘ ( ( ( ∗ ‘ 𝐴 )  ·  𝐵 )  ·  𝐶 ) )  =  ( ℑ ‘ ( ( ∗ ‘ 𝐴 )  ·  ( 𝐵  ·  𝐶 ) ) ) ) | 
						
							| 10 |  | simp3 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℝ )  →  𝐶  ∈  ℝ ) | 
						
							| 11 | 3 4 | mulcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℝ )  →  ( ( ∗ ‘ 𝐴 )  ·  𝐵 )  ∈  ℂ ) | 
						
							| 12 | 10 11 | immul2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℝ )  →  ( ℑ ‘ ( 𝐶  ·  ( ( ∗ ‘ 𝐴 )  ·  𝐵 ) ) )  =  ( 𝐶  ·  ( ℑ ‘ ( ( ∗ ‘ 𝐴 )  ·  𝐵 ) ) ) ) | 
						
							| 13 | 11 7 | mulcomd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℝ )  →  ( ( ( ∗ ‘ 𝐴 )  ·  𝐵 )  ·  𝐶 )  =  ( 𝐶  ·  ( ( ∗ ‘ 𝐴 )  ·  𝐵 ) ) ) | 
						
							| 14 | 13 | fveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℝ )  →  ( ℑ ‘ ( ( ( ∗ ‘ 𝐴 )  ·  𝐵 )  ·  𝐶 ) )  =  ( ℑ ‘ ( 𝐶  ·  ( ( ∗ ‘ 𝐴 )  ·  𝐵 ) ) ) ) | 
						
							| 15 |  | imcl | ⊢ ( ( ( ∗ ‘ 𝐴 )  ·  𝐵 )  ∈  ℂ  →  ( ℑ ‘ ( ( ∗ ‘ 𝐴 )  ·  𝐵 ) )  ∈  ℝ ) | 
						
							| 16 | 15 | recnd | ⊢ ( ( ( ∗ ‘ 𝐴 )  ·  𝐵 )  ∈  ℂ  →  ( ℑ ‘ ( ( ∗ ‘ 𝐴 )  ·  𝐵 ) )  ∈  ℂ ) | 
						
							| 17 | 11 16 | syl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℝ )  →  ( ℑ ‘ ( ( ∗ ‘ 𝐴 )  ·  𝐵 ) )  ∈  ℂ ) | 
						
							| 18 | 17 7 | mulcomd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℝ )  →  ( ( ℑ ‘ ( ( ∗ ‘ 𝐴 )  ·  𝐵 ) )  ·  𝐶 )  =  ( 𝐶  ·  ( ℑ ‘ ( ( ∗ ‘ 𝐴 )  ·  𝐵 ) ) ) ) | 
						
							| 19 | 12 14 18 | 3eqtr4d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℝ )  →  ( ℑ ‘ ( ( ( ∗ ‘ 𝐴 )  ·  𝐵 )  ·  𝐶 ) )  =  ( ( ℑ ‘ ( ( ∗ ‘ 𝐴 )  ·  𝐵 ) )  ·  𝐶 ) ) | 
						
							| 20 | 9 19 | eqtr3d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℝ )  →  ( ℑ ‘ ( ( ∗ ‘ 𝐴 )  ·  ( 𝐵  ·  𝐶 ) ) )  =  ( ( ℑ ‘ ( ( ∗ ‘ 𝐴 )  ·  𝐵 ) )  ·  𝐶 ) ) | 
						
							| 21 |  | simpl | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐶  ∈  ℝ )  →  𝐵  ∈  ℂ ) | 
						
							| 22 | 21 6 | mulcld | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐶  ∈  ℝ )  →  ( 𝐵  ·  𝐶 )  ∈  ℂ ) | 
						
							| 23 | 22 | 3adant1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℝ )  →  ( 𝐵  ·  𝐶 )  ∈  ℂ ) | 
						
							| 24 | 1 | sigarval | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( 𝐵  ·  𝐶 )  ∈  ℂ )  →  ( 𝐴 𝐺 ( 𝐵  ·  𝐶 ) )  =  ( ℑ ‘ ( ( ∗ ‘ 𝐴 )  ·  ( 𝐵  ·  𝐶 ) ) ) ) | 
						
							| 25 | 2 23 24 | syl2anc | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℝ )  →  ( 𝐴 𝐺 ( 𝐵  ·  𝐶 ) )  =  ( ℑ ‘ ( ( ∗ ‘ 𝐴 )  ·  ( 𝐵  ·  𝐶 ) ) ) ) | 
						
							| 26 | 1 | sigarval | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐴 𝐺 𝐵 )  =  ( ℑ ‘ ( ( ∗ ‘ 𝐴 )  ·  𝐵 ) ) ) | 
						
							| 27 | 26 | 3adant3 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℝ )  →  ( 𝐴 𝐺 𝐵 )  =  ( ℑ ‘ ( ( ∗ ‘ 𝐴 )  ·  𝐵 ) ) ) | 
						
							| 28 | 27 | oveq1d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℝ )  →  ( ( 𝐴 𝐺 𝐵 )  ·  𝐶 )  =  ( ( ℑ ‘ ( ( ∗ ‘ 𝐴 )  ·  𝐵 ) )  ·  𝐶 ) ) | 
						
							| 29 | 20 25 28 | 3eqtr4d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℝ )  →  ( 𝐴 𝐺 ( 𝐵  ·  𝐶 ) )  =  ( ( 𝐴 𝐺 𝐵 )  ·  𝐶 ) ) |