Step |
Hyp |
Ref |
Expression |
1 |
|
sigar |
⊢ 𝐺 = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( ℑ ‘ ( ( ∗ ‘ 𝑥 ) · 𝑦 ) ) ) |
2 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ ) → 𝐴 ∈ ℂ ) |
3 |
2
|
cjcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ ) → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
4 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ ) → 𝐵 ∈ ℂ ) |
5 |
|
simpr |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ ) → 𝐶 ∈ ℝ ) |
6 |
5
|
recnd |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ ) → 𝐶 ∈ ℂ ) |
7 |
6
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ ) → 𝐶 ∈ ℂ ) |
8 |
3 4 7
|
mulassd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ ) → ( ( ( ∗ ‘ 𝐴 ) · 𝐵 ) · 𝐶 ) = ( ( ∗ ‘ 𝐴 ) · ( 𝐵 · 𝐶 ) ) ) |
9 |
8
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ ) → ( ℑ ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐵 ) · 𝐶 ) ) = ( ℑ ‘ ( ( ∗ ‘ 𝐴 ) · ( 𝐵 · 𝐶 ) ) ) ) |
10 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ ) → 𝐶 ∈ ℝ ) |
11 |
3 4
|
mulcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ ) → ( ( ∗ ‘ 𝐴 ) · 𝐵 ) ∈ ℂ ) |
12 |
10 11
|
immul2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ ) → ( ℑ ‘ ( 𝐶 · ( ( ∗ ‘ 𝐴 ) · 𝐵 ) ) ) = ( 𝐶 · ( ℑ ‘ ( ( ∗ ‘ 𝐴 ) · 𝐵 ) ) ) ) |
13 |
11 7
|
mulcomd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ ) → ( ( ( ∗ ‘ 𝐴 ) · 𝐵 ) · 𝐶 ) = ( 𝐶 · ( ( ∗ ‘ 𝐴 ) · 𝐵 ) ) ) |
14 |
13
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ ) → ( ℑ ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐵 ) · 𝐶 ) ) = ( ℑ ‘ ( 𝐶 · ( ( ∗ ‘ 𝐴 ) · 𝐵 ) ) ) ) |
15 |
|
imcl |
⊢ ( ( ( ∗ ‘ 𝐴 ) · 𝐵 ) ∈ ℂ → ( ℑ ‘ ( ( ∗ ‘ 𝐴 ) · 𝐵 ) ) ∈ ℝ ) |
16 |
15
|
recnd |
⊢ ( ( ( ∗ ‘ 𝐴 ) · 𝐵 ) ∈ ℂ → ( ℑ ‘ ( ( ∗ ‘ 𝐴 ) · 𝐵 ) ) ∈ ℂ ) |
17 |
11 16
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ ) → ( ℑ ‘ ( ( ∗ ‘ 𝐴 ) · 𝐵 ) ) ∈ ℂ ) |
18 |
17 7
|
mulcomd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ ) → ( ( ℑ ‘ ( ( ∗ ‘ 𝐴 ) · 𝐵 ) ) · 𝐶 ) = ( 𝐶 · ( ℑ ‘ ( ( ∗ ‘ 𝐴 ) · 𝐵 ) ) ) ) |
19 |
12 14 18
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ ) → ( ℑ ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐵 ) · 𝐶 ) ) = ( ( ℑ ‘ ( ( ∗ ‘ 𝐴 ) · 𝐵 ) ) · 𝐶 ) ) |
20 |
9 19
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ ) → ( ℑ ‘ ( ( ∗ ‘ 𝐴 ) · ( 𝐵 · 𝐶 ) ) ) = ( ( ℑ ‘ ( ( ∗ ‘ 𝐴 ) · 𝐵 ) ) · 𝐶 ) ) |
21 |
|
simpl |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ ) → 𝐵 ∈ ℂ ) |
22 |
21 6
|
mulcld |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 · 𝐶 ) ∈ ℂ ) |
23 |
22
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 · 𝐶 ) ∈ ℂ ) |
24 |
1
|
sigarval |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 · 𝐶 ) ∈ ℂ ) → ( 𝐴 𝐺 ( 𝐵 · 𝐶 ) ) = ( ℑ ‘ ( ( ∗ ‘ 𝐴 ) · ( 𝐵 · 𝐶 ) ) ) ) |
25 |
2 23 24
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 𝐺 ( 𝐵 · 𝐶 ) ) = ( ℑ ‘ ( ( ∗ ‘ 𝐴 ) · ( 𝐵 · 𝐶 ) ) ) ) |
26 |
1
|
sigarval |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 𝐺 𝐵 ) = ( ℑ ‘ ( ( ∗ ‘ 𝐴 ) · 𝐵 ) ) ) |
27 |
26
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 𝐺 𝐵 ) = ( ℑ ‘ ( ( ∗ ‘ 𝐴 ) · 𝐵 ) ) ) |
28 |
27
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 𝐺 𝐵 ) · 𝐶 ) = ( ( ℑ ‘ ( ( ∗ ‘ 𝐴 ) · 𝐵 ) ) · 𝐶 ) ) |
29 |
20 25 28
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 𝐺 ( 𝐵 · 𝐶 ) ) = ( ( 𝐴 𝐺 𝐵 ) · 𝐶 ) ) |