Step |
Hyp |
Ref |
Expression |
1 |
|
sigar |
⊢ 𝐺 = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( ℑ ‘ ( ( ∗ ‘ 𝑥 ) · 𝑦 ) ) ) |
2 |
|
cjsub |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ∗ ‘ ( 𝐴 − 𝐶 ) ) = ( ( ∗ ‘ 𝐴 ) − ( ∗ ‘ 𝐶 ) ) ) |
3 |
2
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ∗ ‘ ( 𝐴 − 𝐶 ) ) · 𝐵 ) = ( ( ( ∗ ‘ 𝐴 ) − ( ∗ ‘ 𝐶 ) ) · 𝐵 ) ) |
4 |
3
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ∗ ‘ ( 𝐴 − 𝐶 ) ) · 𝐵 ) = ( ( ( ∗ ‘ 𝐴 ) − ( ∗ ‘ 𝐶 ) ) · 𝐵 ) ) |
5 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
6 |
5
|
cjcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
7 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐶 ∈ ℂ ) |
8 |
7
|
cjcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ∗ ‘ 𝐶 ) ∈ ℂ ) |
9 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐵 ∈ ℂ ) |
10 |
6 8 9
|
subdird |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ( ∗ ‘ 𝐴 ) − ( ∗ ‘ 𝐶 ) ) · 𝐵 ) = ( ( ( ∗ ‘ 𝐴 ) · 𝐵 ) − ( ( ∗ ‘ 𝐶 ) · 𝐵 ) ) ) |
11 |
4 10
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ∗ ‘ ( 𝐴 − 𝐶 ) ) · 𝐵 ) = ( ( ( ∗ ‘ 𝐴 ) · 𝐵 ) − ( ( ∗ ‘ 𝐶 ) · 𝐵 ) ) ) |
12 |
11
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ℑ ‘ ( ( ∗ ‘ ( 𝐴 − 𝐶 ) ) · 𝐵 ) ) = ( ℑ ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐵 ) − ( ( ∗ ‘ 𝐶 ) · 𝐵 ) ) ) ) |
13 |
6 9
|
mulcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ∗ ‘ 𝐴 ) · 𝐵 ) ∈ ℂ ) |
14 |
8 9
|
mulcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ∗ ‘ 𝐶 ) · 𝐵 ) ∈ ℂ ) |
15 |
13 14
|
imsubd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ℑ ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐵 ) − ( ( ∗ ‘ 𝐶 ) · 𝐵 ) ) ) = ( ( ℑ ‘ ( ( ∗ ‘ 𝐴 ) · 𝐵 ) ) − ( ℑ ‘ ( ( ∗ ‘ 𝐶 ) · 𝐵 ) ) ) ) |
16 |
12 15
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ℑ ‘ ( ( ∗ ‘ ( 𝐴 − 𝐶 ) ) · 𝐵 ) ) = ( ( ℑ ‘ ( ( ∗ ‘ 𝐴 ) · 𝐵 ) ) − ( ℑ ‘ ( ( ∗ ‘ 𝐶 ) · 𝐵 ) ) ) ) |
17 |
5 7
|
subcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 − 𝐶 ) ∈ ℂ ) |
18 |
1
|
sigarval |
⊢ ( ( ( 𝐴 − 𝐶 ) ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 − 𝐶 ) 𝐺 𝐵 ) = ( ℑ ‘ ( ( ∗ ‘ ( 𝐴 − 𝐶 ) ) · 𝐵 ) ) ) |
19 |
17 9 18
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − 𝐶 ) 𝐺 𝐵 ) = ( ℑ ‘ ( ( ∗ ‘ ( 𝐴 − 𝐶 ) ) · 𝐵 ) ) ) |
20 |
1
|
sigarval |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 𝐺 𝐵 ) = ( ℑ ‘ ( ( ∗ ‘ 𝐴 ) · 𝐵 ) ) ) |
21 |
20
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 𝐺 𝐵 ) = ( ℑ ‘ ( ( ∗ ‘ 𝐴 ) · 𝐵 ) ) ) |
22 |
|
3simpc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ) |
23 |
22
|
ancomd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ) |
24 |
1
|
sigarval |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐶 𝐺 𝐵 ) = ( ℑ ‘ ( ( ∗ ‘ 𝐶 ) · 𝐵 ) ) ) |
25 |
23 24
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐶 𝐺 𝐵 ) = ( ℑ ‘ ( ( ∗ ‘ 𝐶 ) · 𝐵 ) ) ) |
26 |
21 25
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 𝐺 𝐵 ) − ( 𝐶 𝐺 𝐵 ) ) = ( ( ℑ ‘ ( ( ∗ ‘ 𝐴 ) · 𝐵 ) ) − ( ℑ ‘ ( ( ∗ ‘ 𝐶 ) · 𝐵 ) ) ) ) |
27 |
16 19 26
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − 𝐶 ) 𝐺 𝐵 ) = ( ( 𝐴 𝐺 𝐵 ) − ( 𝐶 𝐺 𝐵 ) ) ) |