| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sigar | ⊢ 𝐺  =  ( 𝑥  ∈  ℂ ,  𝑦  ∈  ℂ  ↦  ( ℑ ‘ ( ( ∗ ‘ 𝑥 )  ·  𝑦 ) ) ) | 
						
							| 2 |  | cjsub | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ∗ ‘ ( 𝐴  −  𝐶 ) )  =  ( ( ∗ ‘ 𝐴 )  −  ( ∗ ‘ 𝐶 ) ) ) | 
						
							| 3 | 2 | oveq1d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ( ∗ ‘ ( 𝐴  −  𝐶 ) )  ·  𝐵 )  =  ( ( ( ∗ ‘ 𝐴 )  −  ( ∗ ‘ 𝐶 ) )  ·  𝐵 ) ) | 
						
							| 4 | 3 | 3adant2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ( ∗ ‘ ( 𝐴  −  𝐶 ) )  ·  𝐵 )  =  ( ( ( ∗ ‘ 𝐴 )  −  ( ∗ ‘ 𝐶 ) )  ·  𝐵 ) ) | 
						
							| 5 |  | simp1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  𝐴  ∈  ℂ ) | 
						
							| 6 | 5 | cjcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ∗ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 7 |  | simp3 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  𝐶  ∈  ℂ ) | 
						
							| 8 | 7 | cjcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ∗ ‘ 𝐶 )  ∈  ℂ ) | 
						
							| 9 |  | simp2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  𝐵  ∈  ℂ ) | 
						
							| 10 | 6 8 9 | subdird | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ( ( ∗ ‘ 𝐴 )  −  ( ∗ ‘ 𝐶 ) )  ·  𝐵 )  =  ( ( ( ∗ ‘ 𝐴 )  ·  𝐵 )  −  ( ( ∗ ‘ 𝐶 )  ·  𝐵 ) ) ) | 
						
							| 11 | 4 10 | eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ( ∗ ‘ ( 𝐴  −  𝐶 ) )  ·  𝐵 )  =  ( ( ( ∗ ‘ 𝐴 )  ·  𝐵 )  −  ( ( ∗ ‘ 𝐶 )  ·  𝐵 ) ) ) | 
						
							| 12 | 11 | fveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ℑ ‘ ( ( ∗ ‘ ( 𝐴  −  𝐶 ) )  ·  𝐵 ) )  =  ( ℑ ‘ ( ( ( ∗ ‘ 𝐴 )  ·  𝐵 )  −  ( ( ∗ ‘ 𝐶 )  ·  𝐵 ) ) ) ) | 
						
							| 13 | 6 9 | mulcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ( ∗ ‘ 𝐴 )  ·  𝐵 )  ∈  ℂ ) | 
						
							| 14 | 8 9 | mulcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ( ∗ ‘ 𝐶 )  ·  𝐵 )  ∈  ℂ ) | 
						
							| 15 | 13 14 | imsubd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ℑ ‘ ( ( ( ∗ ‘ 𝐴 )  ·  𝐵 )  −  ( ( ∗ ‘ 𝐶 )  ·  𝐵 ) ) )  =  ( ( ℑ ‘ ( ( ∗ ‘ 𝐴 )  ·  𝐵 ) )  −  ( ℑ ‘ ( ( ∗ ‘ 𝐶 )  ·  𝐵 ) ) ) ) | 
						
							| 16 | 12 15 | eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ℑ ‘ ( ( ∗ ‘ ( 𝐴  −  𝐶 ) )  ·  𝐵 ) )  =  ( ( ℑ ‘ ( ( ∗ ‘ 𝐴 )  ·  𝐵 ) )  −  ( ℑ ‘ ( ( ∗ ‘ 𝐶 )  ·  𝐵 ) ) ) ) | 
						
							| 17 | 5 7 | subcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐴  −  𝐶 )  ∈  ℂ ) | 
						
							| 18 | 1 | sigarval | ⊢ ( ( ( 𝐴  −  𝐶 )  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( 𝐴  −  𝐶 ) 𝐺 𝐵 )  =  ( ℑ ‘ ( ( ∗ ‘ ( 𝐴  −  𝐶 ) )  ·  𝐵 ) ) ) | 
						
							| 19 | 17 9 18 | syl2anc | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ( 𝐴  −  𝐶 ) 𝐺 𝐵 )  =  ( ℑ ‘ ( ( ∗ ‘ ( 𝐴  −  𝐶 ) )  ·  𝐵 ) ) ) | 
						
							| 20 | 1 | sigarval | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐴 𝐺 𝐵 )  =  ( ℑ ‘ ( ( ∗ ‘ 𝐴 )  ·  𝐵 ) ) ) | 
						
							| 21 | 20 | 3adant3 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐴 𝐺 𝐵 )  =  ( ℑ ‘ ( ( ∗ ‘ 𝐴 )  ·  𝐵 ) ) ) | 
						
							| 22 |  | 3simpc | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ ) ) | 
						
							| 23 | 22 | ancomd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐶  ∈  ℂ  ∧  𝐵  ∈  ℂ ) ) | 
						
							| 24 | 1 | sigarval | ⊢ ( ( 𝐶  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐶 𝐺 𝐵 )  =  ( ℑ ‘ ( ( ∗ ‘ 𝐶 )  ·  𝐵 ) ) ) | 
						
							| 25 | 23 24 | syl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐶 𝐺 𝐵 )  =  ( ℑ ‘ ( ( ∗ ‘ 𝐶 )  ·  𝐵 ) ) ) | 
						
							| 26 | 21 25 | oveq12d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ( 𝐴 𝐺 𝐵 )  −  ( 𝐶 𝐺 𝐵 ) )  =  ( ( ℑ ‘ ( ( ∗ ‘ 𝐴 )  ·  𝐵 ) )  −  ( ℑ ‘ ( ( ∗ ‘ 𝐶 )  ·  𝐵 ) ) ) ) | 
						
							| 27 | 16 19 26 | 3eqtr4d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ( 𝐴  −  𝐶 ) 𝐺 𝐵 )  =  ( ( 𝐴 𝐺 𝐵 )  −  ( 𝐶 𝐺 𝐵 ) ) ) |