| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sigar | ⊢ 𝐺  =  ( 𝑥  ∈  ℂ ,  𝑦  ∈  ℂ  ↦  ( ℑ ‘ ( ( ∗ ‘ 𝑥 )  ·  𝑦 ) ) ) | 
						
							| 2 |  | simpl | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  𝑥  =  𝐴 ) | 
						
							| 3 | 2 | fveq2d | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  ( ∗ ‘ 𝑥 )  =  ( ∗ ‘ 𝐴 ) ) | 
						
							| 4 |  | simpr | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  𝑦  =  𝐵 ) | 
						
							| 5 | 3 4 | oveq12d | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  ( ( ∗ ‘ 𝑥 )  ·  𝑦 )  =  ( ( ∗ ‘ 𝐴 )  ·  𝐵 ) ) | 
						
							| 6 | 5 | fveq2d | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  ( ℑ ‘ ( ( ∗ ‘ 𝑥 )  ·  𝑦 ) )  =  ( ℑ ‘ ( ( ∗ ‘ 𝐴 )  ·  𝐵 ) ) ) | 
						
							| 7 |  | fvex | ⊢ ( ℑ ‘ ( ( ∗ ‘ 𝐴 )  ·  𝐵 ) )  ∈  V | 
						
							| 8 | 6 1 7 | ovmpoa | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐴 𝐺 𝐵 )  =  ( ℑ ‘ ( ( ∗ ‘ 𝐴 )  ·  𝐵 ) ) ) |