Step |
Hyp |
Ref |
Expression |
1 |
|
sigar |
⊢ 𝐺 = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( ℑ ‘ ( ( ∗ ‘ 𝑥 ) · 𝑦 ) ) ) |
2 |
|
simpl |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝑥 = 𝐴 ) |
3 |
2
|
fveq2d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ∗ ‘ 𝑥 ) = ( ∗ ‘ 𝐴 ) ) |
4 |
|
simpr |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝑦 = 𝐵 ) |
5 |
3 4
|
oveq12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( ∗ ‘ 𝑥 ) · 𝑦 ) = ( ( ∗ ‘ 𝐴 ) · 𝐵 ) ) |
6 |
5
|
fveq2d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ℑ ‘ ( ( ∗ ‘ 𝑥 ) · 𝑦 ) ) = ( ℑ ‘ ( ( ∗ ‘ 𝐴 ) · 𝐵 ) ) ) |
7 |
|
fvex |
⊢ ( ℑ ‘ ( ( ∗ ‘ 𝐴 ) · 𝐵 ) ) ∈ V |
8 |
6 1 7
|
ovmpoa |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 𝐺 𝐵 ) = ( ℑ ‘ ( ( ∗ ‘ 𝐴 ) · 𝐵 ) ) ) |