| Step |
Hyp |
Ref |
Expression |
| 1 |
|
siii.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
| 2 |
|
siii.6 |
⊢ 𝑁 = ( normCV ‘ 𝑈 ) |
| 3 |
|
siii.7 |
⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) |
| 4 |
|
siii.9 |
⊢ 𝑈 ∈ CPreHilOLD |
| 5 |
|
siii.a |
⊢ 𝐴 ∈ 𝑋 |
| 6 |
|
siii.b |
⊢ 𝐵 ∈ 𝑋 |
| 7 |
|
sii1.3 |
⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) |
| 8 |
|
sii1.4 |
⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) |
| 9 |
|
sii1.c |
⊢ 𝐶 ∈ ℂ |
| 10 |
|
sii1.r |
⊢ ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ∈ ℝ |
| 11 |
|
sii1.z |
⊢ 0 ≤ ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) |
| 12 |
4
|
phnvi |
⊢ 𝑈 ∈ NrmCVec |
| 13 |
9
|
cjcli |
⊢ ( ∗ ‘ 𝐶 ) ∈ ℂ |
| 14 |
1 8
|
nvscl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( ∗ ‘ 𝐶 ) ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) → ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ∈ 𝑋 ) |
| 15 |
12 13 6 14
|
mp3an |
⊢ ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ∈ 𝑋 |
| 16 |
1 7
|
nvmcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ∈ 𝑋 ) → ( 𝐴 𝑀 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) ∈ 𝑋 ) |
| 17 |
12 5 15 16
|
mp3an |
⊢ ( 𝐴 𝑀 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) ∈ 𝑋 |
| 18 |
1 2 12 17
|
nvcli |
⊢ ( 𝑁 ‘ ( 𝐴 𝑀 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) ) ∈ ℝ |
| 19 |
18
|
sqge0i |
⊢ 0 ≤ ( ( 𝑁 ‘ ( 𝐴 𝑀 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) ) ↑ 2 ) |
| 20 |
17 5 15
|
3pm3.2i |
⊢ ( ( 𝐴 𝑀 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ∈ 𝑋 ) |
| 21 |
1 7 3
|
dipsubdi |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( ( 𝐴 𝑀 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ∈ 𝑋 ) ) → ( ( 𝐴 𝑀 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) 𝑃 ( 𝐴 𝑀 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) ) = ( ( ( 𝐴 𝑀 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) 𝑃 𝐴 ) − ( ( 𝐴 𝑀 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) 𝑃 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) ) ) |
| 22 |
4 20 21
|
mp2an |
⊢ ( ( 𝐴 𝑀 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) 𝑃 ( 𝐴 𝑀 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) ) = ( ( ( 𝐴 𝑀 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) 𝑃 𝐴 ) − ( ( 𝐴 𝑀 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) 𝑃 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) ) |
| 23 |
1 2 3
|
ipidsq |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝑀 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) ∈ 𝑋 ) → ( ( 𝐴 𝑀 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) 𝑃 ( 𝐴 𝑀 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) ) = ( ( 𝑁 ‘ ( 𝐴 𝑀 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) ) ↑ 2 ) ) |
| 24 |
12 17 23
|
mp2an |
⊢ ( ( 𝐴 𝑀 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) 𝑃 ( 𝐴 𝑀 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) ) = ( ( 𝑁 ‘ ( 𝐴 𝑀 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) ) ↑ 2 ) |
| 25 |
13 6 15
|
3pm3.2i |
⊢ ( ( ∗ ‘ 𝐶 ) ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ∈ 𝑋 ) |
| 26 |
1 8 3
|
dipass |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( ( ∗ ‘ 𝐶 ) ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ∈ 𝑋 ) ) → ( ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) 𝑃 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) = ( ( ∗ ‘ 𝐶 ) · ( 𝐵 𝑃 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) ) ) |
| 27 |
4 25 26
|
mp2an |
⊢ ( ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) 𝑃 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) = ( ( ∗ ‘ 𝐶 ) · ( 𝐵 𝑃 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) ) |
| 28 |
6 9 6
|
3pm3.2i |
⊢ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) |
| 29 |
1 8 3
|
dipassr2 |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐵 𝑃 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) = ( 𝐶 · ( 𝐵 𝑃 𝐵 ) ) ) |
| 30 |
4 28 29
|
mp2an |
⊢ ( 𝐵 𝑃 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) = ( 𝐶 · ( 𝐵 𝑃 𝐵 ) ) |
| 31 |
1 2 3
|
ipidsq |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 𝑃 𝐵 ) = ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) |
| 32 |
12 6 31
|
mp2an |
⊢ ( 𝐵 𝑃 𝐵 ) = ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) |
| 33 |
32
|
oveq2i |
⊢ ( 𝐶 · ( 𝐵 𝑃 𝐵 ) ) = ( 𝐶 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) |
| 34 |
30 33
|
eqtri |
⊢ ( 𝐵 𝑃 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) = ( 𝐶 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) |
| 35 |
34
|
oveq2i |
⊢ ( ( ∗ ‘ 𝐶 ) · ( 𝐵 𝑃 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) ) = ( ( ∗ ‘ 𝐶 ) · ( 𝐶 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) |
| 36 |
27 35
|
eqtri |
⊢ ( ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) 𝑃 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) = ( ( ∗ ‘ 𝐶 ) · ( 𝐶 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) |
| 37 |
36
|
oveq2i |
⊢ ( ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) − ( ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) 𝑃 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) ) = ( ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) − ( ( ∗ ‘ 𝐶 ) · ( 𝐶 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) |
| 38 |
37
|
oveq2i |
⊢ ( ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) − ( ( ∗ ‘ 𝐶 ) · ( 𝐵 𝑃 𝐴 ) ) ) − ( ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) − ( ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) 𝑃 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) ) ) = ( ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) − ( ( ∗ ‘ 𝐶 ) · ( 𝐵 𝑃 𝐴 ) ) ) − ( ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) − ( ( ∗ ‘ 𝐶 ) · ( 𝐶 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) ) |
| 39 |
1 2 12 5
|
nvcli |
⊢ ( 𝑁 ‘ 𝐴 ) ∈ ℝ |
| 40 |
39
|
recni |
⊢ ( 𝑁 ‘ 𝐴 ) ∈ ℂ |
| 41 |
40
|
sqcli |
⊢ ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ∈ ℂ |
| 42 |
1 3
|
dipcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐵 𝑃 𝐴 ) ∈ ℂ ) |
| 43 |
12 6 5 42
|
mp3an |
⊢ ( 𝐵 𝑃 𝐴 ) ∈ ℂ |
| 44 |
13 43
|
mulcli |
⊢ ( ( ∗ ‘ 𝐶 ) · ( 𝐵 𝑃 𝐴 ) ) ∈ ℂ |
| 45 |
10
|
recni |
⊢ ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ∈ ℂ |
| 46 |
1 2 12 6
|
nvcli |
⊢ ( 𝑁 ‘ 𝐵 ) ∈ ℝ |
| 47 |
46
|
recni |
⊢ ( 𝑁 ‘ 𝐵 ) ∈ ℂ |
| 48 |
47
|
sqcli |
⊢ ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ∈ ℂ |
| 49 |
9 48
|
mulcli |
⊢ ( 𝐶 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ∈ ℂ |
| 50 |
13 49
|
mulcli |
⊢ ( ( ∗ ‘ 𝐶 ) · ( 𝐶 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ∈ ℂ |
| 51 |
|
sub4 |
⊢ ( ( ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ∧ ( ( ∗ ‘ 𝐶 ) · ( 𝐵 𝑃 𝐴 ) ) ∈ ℂ ) ∧ ( ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ∈ ℂ ∧ ( ( ∗ ‘ 𝐶 ) · ( 𝐶 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ∈ ℂ ) ) → ( ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) − ( ( ∗ ‘ 𝐶 ) · ( 𝐵 𝑃 𝐴 ) ) ) − ( ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) − ( ( ∗ ‘ 𝐶 ) · ( 𝐶 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) ) = ( ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) − ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ) − ( ( ( ∗ ‘ 𝐶 ) · ( 𝐵 𝑃 𝐴 ) ) − ( ( ∗ ‘ 𝐶 ) · ( 𝐶 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) ) ) |
| 52 |
41 44 45 50 51
|
mp4an |
⊢ ( ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) − ( ( ∗ ‘ 𝐶 ) · ( 𝐵 𝑃 𝐴 ) ) ) − ( ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) − ( ( ∗ ‘ 𝐶 ) · ( 𝐶 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) ) = ( ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) − ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ) − ( ( ( ∗ ‘ 𝐶 ) · ( 𝐵 𝑃 𝐴 ) ) − ( ( ∗ ‘ 𝐶 ) · ( 𝐶 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) ) |
| 53 |
38 52
|
eqtri |
⊢ ( ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) − ( ( ∗ ‘ 𝐶 ) · ( 𝐵 𝑃 𝐴 ) ) ) − ( ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) − ( ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) 𝑃 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) ) ) = ( ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) − ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ) − ( ( ( ∗ ‘ 𝐶 ) · ( 𝐵 𝑃 𝐴 ) ) − ( ( ∗ ‘ 𝐶 ) · ( 𝐶 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) ) |
| 54 |
5 15 5
|
3pm3.2i |
⊢ ( 𝐴 ∈ 𝑋 ∧ ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) |
| 55 |
1 7 3
|
dipsubdir |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝐴 𝑀 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) 𝑃 𝐴 ) = ( ( 𝐴 𝑃 𝐴 ) − ( ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) 𝑃 𝐴 ) ) ) |
| 56 |
4 54 55
|
mp2an |
⊢ ( ( 𝐴 𝑀 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) 𝑃 𝐴 ) = ( ( 𝐴 𝑃 𝐴 ) − ( ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) 𝑃 𝐴 ) ) |
| 57 |
1 2 3
|
ipidsq |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝑃 𝐴 ) = ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) |
| 58 |
12 5 57
|
mp2an |
⊢ ( 𝐴 𝑃 𝐴 ) = ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) |
| 59 |
13 6 5
|
3pm3.2i |
⊢ ( ( ∗ ‘ 𝐶 ) ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) |
| 60 |
1 8 3
|
dipass |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( ( ∗ ‘ 𝐶 ) ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) 𝑃 𝐴 ) = ( ( ∗ ‘ 𝐶 ) · ( 𝐵 𝑃 𝐴 ) ) ) |
| 61 |
4 59 60
|
mp2an |
⊢ ( ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) 𝑃 𝐴 ) = ( ( ∗ ‘ 𝐶 ) · ( 𝐵 𝑃 𝐴 ) ) |
| 62 |
58 61
|
oveq12i |
⊢ ( ( 𝐴 𝑃 𝐴 ) − ( ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) 𝑃 𝐴 ) ) = ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) − ( ( ∗ ‘ 𝐶 ) · ( 𝐵 𝑃 𝐴 ) ) ) |
| 63 |
56 62
|
eqtri |
⊢ ( ( 𝐴 𝑀 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) 𝑃 𝐴 ) = ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) − ( ( ∗ ‘ 𝐶 ) · ( 𝐵 𝑃 𝐴 ) ) ) |
| 64 |
5 15 15
|
3pm3.2i |
⊢ ( 𝐴 ∈ 𝑋 ∧ ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ∈ 𝑋 ∧ ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ∈ 𝑋 ) |
| 65 |
1 7 3
|
dipsubdir |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ∈ 𝑋 ∧ ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ∈ 𝑋 ) ) → ( ( 𝐴 𝑀 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) 𝑃 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) = ( ( 𝐴 𝑃 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) − ( ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) 𝑃 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) ) ) |
| 66 |
4 64 65
|
mp2an |
⊢ ( ( 𝐴 𝑀 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) 𝑃 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) = ( ( 𝐴 𝑃 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) − ( ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) 𝑃 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) ) |
| 67 |
5 9 6
|
3pm3.2i |
⊢ ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) |
| 68 |
1 8 3
|
dipassr2 |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝑃 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) = ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ) |
| 69 |
4 67 68
|
mp2an |
⊢ ( 𝐴 𝑃 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) = ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) |
| 70 |
69
|
oveq1i |
⊢ ( ( 𝐴 𝑃 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) − ( ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) 𝑃 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) ) = ( ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) − ( ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) 𝑃 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) ) |
| 71 |
66 70
|
eqtri |
⊢ ( ( 𝐴 𝑀 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) 𝑃 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) = ( ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) − ( ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) 𝑃 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) ) |
| 72 |
63 71
|
oveq12i |
⊢ ( ( ( 𝐴 𝑀 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) 𝑃 𝐴 ) − ( ( 𝐴 𝑀 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) 𝑃 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) ) = ( ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) − ( ( ∗ ‘ 𝐶 ) · ( 𝐵 𝑃 𝐴 ) ) ) − ( ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) − ( ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) 𝑃 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) ) ) |
| 73 |
13 43 49
|
subdii |
⊢ ( ( ∗ ‘ 𝐶 ) · ( ( 𝐵 𝑃 𝐴 ) − ( 𝐶 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) = ( ( ( ∗ ‘ 𝐶 ) · ( 𝐵 𝑃 𝐴 ) ) − ( ( ∗ ‘ 𝐶 ) · ( 𝐶 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) |
| 74 |
73
|
oveq2i |
⊢ ( ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) − ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ) − ( ( ∗ ‘ 𝐶 ) · ( ( 𝐵 𝑃 𝐴 ) − ( 𝐶 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) ) = ( ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) − ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ) − ( ( ( ∗ ‘ 𝐶 ) · ( 𝐵 𝑃 𝐴 ) ) − ( ( ∗ ‘ 𝐶 ) · ( 𝐶 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) ) |
| 75 |
53 72 74
|
3eqtr4i |
⊢ ( ( ( 𝐴 𝑀 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) 𝑃 𝐴 ) − ( ( 𝐴 𝑀 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) 𝑃 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) ) = ( ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) − ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ) − ( ( ∗ ‘ 𝐶 ) · ( ( 𝐵 𝑃 𝐴 ) − ( 𝐶 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) ) |
| 76 |
22 24 75
|
3eqtr3i |
⊢ ( ( 𝑁 ‘ ( 𝐴 𝑀 ( ( ∗ ‘ 𝐶 ) 𝑆 𝐵 ) ) ) ↑ 2 ) = ( ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) − ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ) − ( ( ∗ ‘ 𝐶 ) · ( ( 𝐵 𝑃 𝐴 ) − ( 𝐶 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) ) |
| 77 |
19 76
|
breqtri |
⊢ 0 ≤ ( ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) − ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ) − ( ( ∗ ‘ 𝐶 ) · ( ( 𝐵 𝑃 𝐴 ) − ( 𝐶 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) ) |
| 78 |
43 49
|
subeq0i |
⊢ ( ( ( 𝐵 𝑃 𝐴 ) − ( 𝐶 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) = 0 ↔ ( 𝐵 𝑃 𝐴 ) = ( 𝐶 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) |
| 79 |
|
oveq2 |
⊢ ( ( ( 𝐵 𝑃 𝐴 ) − ( 𝐶 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) = 0 → ( ( ∗ ‘ 𝐶 ) · ( ( 𝐵 𝑃 𝐴 ) − ( 𝐶 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) = ( ( ∗ ‘ 𝐶 ) · 0 ) ) |
| 80 |
13
|
mul01i |
⊢ ( ( ∗ ‘ 𝐶 ) · 0 ) = 0 |
| 81 |
79 80
|
eqtrdi |
⊢ ( ( ( 𝐵 𝑃 𝐴 ) − ( 𝐶 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) = 0 → ( ( ∗ ‘ 𝐶 ) · ( ( 𝐵 𝑃 𝐴 ) − ( 𝐶 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) = 0 ) |
| 82 |
78 81
|
sylbir |
⊢ ( ( 𝐵 𝑃 𝐴 ) = ( 𝐶 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) → ( ( ∗ ‘ 𝐶 ) · ( ( 𝐵 𝑃 𝐴 ) − ( 𝐶 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) = 0 ) |
| 83 |
82
|
oveq2d |
⊢ ( ( 𝐵 𝑃 𝐴 ) = ( 𝐶 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) → ( ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) − ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ) − ( ( ∗ ‘ 𝐶 ) · ( ( 𝐵 𝑃 𝐴 ) − ( 𝐶 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) ) = ( ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) − ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ) − 0 ) ) |
| 84 |
39
|
resqcli |
⊢ ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ∈ ℝ |
| 85 |
84
|
recni |
⊢ ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ∈ ℂ |
| 86 |
85 45
|
subcli |
⊢ ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) − ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ) ∈ ℂ |
| 87 |
86
|
subid1i |
⊢ ( ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) − ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ) − 0 ) = ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) − ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ) |
| 88 |
83 87
|
eqtrdi |
⊢ ( ( 𝐵 𝑃 𝐴 ) = ( 𝐶 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) → ( ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) − ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ) − ( ( ∗ ‘ 𝐶 ) · ( ( 𝐵 𝑃 𝐴 ) − ( 𝐶 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) ) = ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) − ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 89 |
77 88
|
breqtrid |
⊢ ( ( 𝐵 𝑃 𝐴 ) = ( 𝐶 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) → 0 ≤ ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) − ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 90 |
84 10
|
subge0i |
⊢ ( 0 ≤ ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) − ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ) ↔ ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ≤ ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) |
| 91 |
89 90
|
sylib |
⊢ ( ( 𝐵 𝑃 𝐴 ) = ( 𝐶 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) → ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ≤ ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) |
| 92 |
46
|
resqcli |
⊢ ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ∈ ℝ |
| 93 |
46
|
sqge0i |
⊢ 0 ≤ ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) |
| 94 |
92 93
|
pm3.2i |
⊢ ( ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) |
| 95 |
10 84 94
|
3pm3.2i |
⊢ ( ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ∈ ℝ ∧ ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ∈ ℝ ∧ ( ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) |
| 96 |
|
lemul1a |
⊢ ( ( ( ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ∈ ℝ ∧ ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ∈ ℝ ∧ ( ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ∧ ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ≤ ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) → ( ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ≤ ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) |
| 97 |
95 96
|
mpan |
⊢ ( ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ≤ ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) → ( ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ≤ ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) |
| 98 |
91 97
|
syl |
⊢ ( ( 𝐵 𝑃 𝐴 ) = ( 𝐶 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) → ( ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ≤ ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) |
| 99 |
40 47
|
sqmuli |
⊢ ( ( ( 𝑁 ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) ↑ 2 ) = ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) |
| 100 |
98 99
|
breqtrrdi |
⊢ ( ( 𝐵 𝑃 𝐴 ) = ( 𝐶 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) → ( ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ≤ ( ( ( 𝑁 ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) ↑ 2 ) ) |
| 101 |
10 92
|
mulge0i |
⊢ ( ( 0 ≤ ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ∧ 0 ≤ ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) → 0 ≤ ( ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) |
| 102 |
11 93 101
|
mp2an |
⊢ 0 ≤ ( ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) |
| 103 |
39 46
|
remulcli |
⊢ ( ( 𝑁 ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) ∈ ℝ |
| 104 |
103
|
sqge0i |
⊢ 0 ≤ ( ( ( 𝑁 ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) ↑ 2 ) |
| 105 |
10 92
|
remulcli |
⊢ ( ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ∈ ℝ |
| 106 |
103
|
resqcli |
⊢ ( ( ( 𝑁 ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) ↑ 2 ) ∈ ℝ |
| 107 |
105 106
|
sqrtlei |
⊢ ( ( 0 ≤ ( ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ∧ 0 ≤ ( ( ( 𝑁 ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) ↑ 2 ) ) → ( ( ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ≤ ( ( ( 𝑁 ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) ↑ 2 ) ↔ ( √ ‘ ( ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ≤ ( √ ‘ ( ( ( 𝑁 ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) ↑ 2 ) ) ) ) |
| 108 |
102 104 107
|
mp2an |
⊢ ( ( ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ≤ ( ( ( 𝑁 ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) ↑ 2 ) ↔ ( √ ‘ ( ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ≤ ( √ ‘ ( ( ( 𝑁 ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) ↑ 2 ) ) ) |
| 109 |
100 108
|
sylib |
⊢ ( ( 𝐵 𝑃 𝐴 ) = ( 𝐶 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) → ( √ ‘ ( ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ≤ ( √ ‘ ( ( ( 𝑁 ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) ↑ 2 ) ) ) |
| 110 |
1 3
|
dipcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑃 𝐵 ) ∈ ℂ ) |
| 111 |
12 5 6 110
|
mp3an |
⊢ ( 𝐴 𝑃 𝐵 ) ∈ ℂ |
| 112 |
9 111
|
mulcomi |
⊢ ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) = ( ( 𝐴 𝑃 𝐵 ) · 𝐶 ) |
| 113 |
112
|
oveq1i |
⊢ ( ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) = ( ( ( 𝐴 𝑃 𝐵 ) · 𝐶 ) · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) |
| 114 |
92
|
recni |
⊢ ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ∈ ℂ |
| 115 |
111 9 114
|
mulassi |
⊢ ( ( ( 𝐴 𝑃 𝐵 ) · 𝐶 ) · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) = ( ( 𝐴 𝑃 𝐵 ) · ( 𝐶 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) |
| 116 |
113 115
|
eqtri |
⊢ ( ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) = ( ( 𝐴 𝑃 𝐵 ) · ( 𝐶 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) |
| 117 |
116
|
fveq2i |
⊢ ( √ ‘ ( ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) = ( √ ‘ ( ( 𝐴 𝑃 𝐵 ) · ( 𝐶 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) |
| 118 |
1 2
|
nvge0 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → 0 ≤ ( 𝑁 ‘ 𝐴 ) ) |
| 119 |
12 5 118
|
mp2an |
⊢ 0 ≤ ( 𝑁 ‘ 𝐴 ) |
| 120 |
1 2
|
nvge0 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → 0 ≤ ( 𝑁 ‘ 𝐵 ) ) |
| 121 |
12 6 120
|
mp2an |
⊢ 0 ≤ ( 𝑁 ‘ 𝐵 ) |
| 122 |
39 46
|
mulge0i |
⊢ ( ( 0 ≤ ( 𝑁 ‘ 𝐴 ) ∧ 0 ≤ ( 𝑁 ‘ 𝐵 ) ) → 0 ≤ ( ( 𝑁 ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) ) |
| 123 |
119 121 122
|
mp2an |
⊢ 0 ≤ ( ( 𝑁 ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) |
| 124 |
103
|
sqrtsqi |
⊢ ( 0 ≤ ( ( 𝑁 ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) → ( √ ‘ ( ( ( 𝑁 ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) ↑ 2 ) ) = ( ( 𝑁 ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) ) |
| 125 |
123 124
|
ax-mp |
⊢ ( √ ‘ ( ( ( 𝑁 ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) ↑ 2 ) ) = ( ( 𝑁 ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) |
| 126 |
109 117 125
|
3brtr3g |
⊢ ( ( 𝐵 𝑃 𝐴 ) = ( 𝐶 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) → ( √ ‘ ( ( 𝐴 𝑃 𝐵 ) · ( 𝐶 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) ≤ ( ( 𝑁 ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) ) |