Metamath Proof Explorer


Theorem simp21l

Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012)

Ref Expression
Assertion simp21l ( ( 𝜏 ∧ ( ( 𝜑𝜓 ) ∧ 𝜒𝜃 ) ∧ 𝜂 ) → 𝜑 )

Proof

Step Hyp Ref Expression
1 simp1l ( ( ( 𝜑𝜓 ) ∧ 𝜒𝜃 ) → 𝜑 )
2 1 3ad2ant2 ( ( 𝜏 ∧ ( ( 𝜑𝜓 ) ∧ 𝜒𝜃 ) ∧ 𝜂 ) → 𝜑 )