Metamath Proof Explorer


Theorem simp2l2

Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012)

Ref Expression
Assertion simp2l2 ( ( 𝜏 ∧ ( ( 𝜑𝜓𝜒 ) ∧ 𝜃 ) ∧ 𝜂 ) → 𝜓 )

Proof

Step Hyp Ref Expression
1 simpl2 ( ( ( 𝜑𝜓𝜒 ) ∧ 𝜃 ) → 𝜓 )
2 1 3ad2ant2 ( ( 𝜏 ∧ ( ( 𝜑𝜓𝜒 ) ∧ 𝜃 ) ∧ 𝜂 ) → 𝜓 )