Metamath Proof Explorer


Theorem simp31

Description: Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011)

Ref Expression
Assertion simp31 ( ( 𝜑𝜓 ∧ ( 𝜒𝜃𝜏 ) ) → 𝜒 )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝜒𝜃𝜏 ) → 𝜒 )
2 1 3ad2ant3 ( ( 𝜑𝜓 ∧ ( 𝜒𝜃𝜏 ) ) → 𝜒 )