Metamath Proof Explorer


Theorem simp32

Description: Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011)

Ref Expression
Assertion simp32 ( ( 𝜑𝜓 ∧ ( 𝜒𝜃𝜏 ) ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 simp2 ( ( 𝜒𝜃𝜏 ) → 𝜃 )
2 1 3ad2ant3 ( ( 𝜑𝜓 ∧ ( 𝜒𝜃𝜏 ) ) → 𝜃 )