Metamath Proof Explorer


Theorem simp3l

Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011)

Ref Expression
Assertion simp3l ( ( 𝜑𝜓 ∧ ( 𝜒𝜃 ) ) → 𝜒 )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝜒𝜃 ) → 𝜒 )
2 1 3ad2ant3 ( ( 𝜑𝜓 ∧ ( 𝜒𝜃 ) ) → 𝜒 )