Metamath Proof Explorer


Theorem simpl2im

Description: Implication from an eliminated conjunct implied by the antecedent. (Contributed by BJ/AV, 5-Apr-2021) (Proof shortened by Wolf Lammen, 26-Mar-2022)

Ref Expression
Hypotheses simpl2im.1 ( 𝜑 → ( 𝜓𝜒 ) )
simpl2im.2 ( 𝜒𝜃 )
Assertion simpl2im ( 𝜑𝜃 )

Proof

Step Hyp Ref Expression
1 simpl2im.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 simpl2im.2 ( 𝜒𝜃 )
3 1 simprd ( 𝜑𝜒 )
4 3 2 syl ( 𝜑𝜃 )