Metamath Proof Explorer


Theorem simplbi2com

Description: A deduction eliminating a conjunct, similar to simplbi2 . (Contributed by Alan Sare, 22-Jul-2012) (Proof shortened by Wolf Lammen, 10-Nov-2012)

Ref Expression
Hypothesis simplbi2com.1 ( 𝜑 ↔ ( 𝜓𝜒 ) )
Assertion simplbi2com ( 𝜒 → ( 𝜓𝜑 ) )

Proof

Step Hyp Ref Expression
1 simplbi2com.1 ( 𝜑 ↔ ( 𝜓𝜒 ) )
2 1 simplbi2 ( 𝜓 → ( 𝜒𝜑 ) )
3 2 com12 ( 𝜒 → ( 𝜓𝜑 ) )