Metamath Proof Explorer


Theorem simplbi2comt

Description: Closed form of simplbi2com . (Contributed by Alan Sare, 22-Jul-2012)

Ref Expression
Assertion simplbi2comt ( ( 𝜑 ↔ ( 𝜓𝜒 ) ) → ( 𝜒 → ( 𝜓𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 biimpr ( ( 𝜑 ↔ ( 𝜓𝜒 ) ) → ( ( 𝜓𝜒 ) → 𝜑 ) )
2 1 expcomd ( ( 𝜑 ↔ ( 𝜓𝜒 ) ) → ( 𝜒 → ( 𝜓𝜑 ) ) )