Metamath Proof Explorer


Theorem simpli

Description: Inference eliminating a conjunct. (Contributed by NM, 15-Jun-1994)

Ref Expression
Hypothesis simpli.1 ( 𝜑𝜓 )
Assertion simpli 𝜑

Proof

Step Hyp Ref Expression
1 simpli.1 ( 𝜑𝜓 )
2 simpl ( ( 𝜑𝜓 ) → 𝜑 )
3 1 2 ax-mp 𝜑