Metamath Proof Explorer


Theorem simplld

Description: Deduction form of simpll , eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis simplld.1 ( 𝜑 → ( ( 𝜓𝜒 ) ∧ 𝜃 ) )
Assertion simplld ( 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 simplld.1 ( 𝜑 → ( ( 𝜓𝜒 ) ∧ 𝜃 ) )
2 1 simpld ( 𝜑 → ( 𝜓𝜒 ) )
3 2 simpld ( 𝜑𝜓 )