Metamath Proof Explorer


Theorem simplrd

Description: Deduction eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis simplrd.1 ( 𝜑 → ( ( 𝜓𝜒 ) ∧ 𝜃 ) )
Assertion simplrd ( 𝜑𝜒 )

Proof

Step Hyp Ref Expression
1 simplrd.1 ( 𝜑 → ( ( 𝜓𝜒 ) ∧ 𝜃 ) )
2 1 simpld ( 𝜑 → ( 𝜓𝜒 ) )
3 2 simprd ( 𝜑𝜒 )