Metamath Proof Explorer


Theorem simplrr

Description: Simplification of a conjunction. (Contributed by Jeff Hankins, 28-Jul-2009)

Ref Expression
Assertion simplrr ( ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) ∧ 𝜃 ) → 𝜒 )

Proof

Step Hyp Ref Expression
1 simpr ( ( 𝜓𝜒 ) → 𝜒 )
2 1 ad2antlr ( ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) ∧ 𝜃 ) → 𝜒 )